精英家教网 > 高中数学 > 题目详情
本小题满分12分)


 
已知斜三棱柱ABC—A1B1C1在底面ABC上的射影恰为AC的中点D,又知w.&

  (I)求证:AC1⊥平面A1BC;
(II)求CC1到平面A1AB的距离;
(理)(III)求二面角A—A1B—C的大小
,
解:(I)因为A1D⊥平面ABC,
所以平面AA1C1C⊥平面ABC,                      …………1分
又BC⊥AC,所以BC⊥平面AA1C1C,
得BC⊥AC1,又BA1⊥AC1                               w.&…………2分
所以AC1⊥平面A1BC;                                    …………3分
(II)因为AC1⊥A1C,所以四边形AA1C1C为菱形,
故AA1=AC=2,又D为AC中点,知                         …………4分
取AA1中点F,则AA1⊥平面BCF,从而平面A1AB⊥平面BCF,…………6分
过C作CH⊥BF于H,则CH⊥面A1AB,
                      …………7分
即CC1到平面A1AB的距离为                                      …………8分
(III)过H作HG⊥A1B于G,连CG,则CG⊥A1B,
从而为二面角A—A1B—C的平面角,                                 …………9分

中,                                 w.&…………11分
故二面角A—A1B—C的大小为                                      …………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,点P在正方形ABCD所在的平面外,PD⊥面ABCD,∠PAD=45°,空间一点E在平面ABCD上的射影是点B,且PB⊥面AEC.

(1)求直线AD与平面AEC所成的角的正切值;
(2)若F是AP的中点,求直线BF与CE所成角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)如图,一张平行四边形的硬纸片中,。沿它的对角线把△折起,使点到达平面外点的位置。

(Ⅰ)证明:平面平面
(Ⅱ)如果△为等腰三角形,求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((10分)如图所示,在四棱锥PABCD中,底面为直角梯形,ADBCBAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BCMN分别为PCPB的中点.

(1)求证:PBDM
(2)求BD与平面ADMN所成的角.                          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知四边形ABCD为矩形,PA平面ABCD、M、N、E分别是AB、PC、CD的中点。
(1)求证:MN//平面PAD
(2)当MN平面PCD时,求二面角P-CD-B的大小
                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四面体ABCD中,DA⊥面ABC,∠ABC=90°,AE⊥CD,AF⊥DB.求证:
(1)EF⊥DC; (2)平面DBC⊥平面AEF; (3)若AD=AB=a,AC=求二面角B-DC-A的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若半径是的球与正三棱柱的各个面都相切,则球与正三棱柱的体积比是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如题(20)图,四棱锥中,底面为矩形,底面,点是棱的中点.
(Ⅰ)证明:平面
(Ⅱ)若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体上任意选择4个顶点,由这4个顶点可能构成如下几何体:
①有三个面为全等的等腰直角三角形,有一个面为等边三角形的四面体;
②每个面都是等边三角形的四面体;
③每个面都是直角三角形的四面体;
④有三个面为不全等的直角三角形,有一个面为等边三角形的四面体。
以上结论其中正确的是              (写出所有正确结论的编号)。

查看答案和解析>>

同步练习册答案