精英家教网 > 高中数学 > 题目详情
20.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5}则(∁UA)∪B=(  )
A.{3}B.{4,5}C.{1,3,4,5,6}D.{2,3,4,5,7}

分析 根据补集与并集的定义,进行计算即可.

解答 解:U={1,2,3,4,5,6,7},A={2,4,5,7},
∴∁UA={1,3,6},
∵B={3,4,5}
∴(∁UA)∪B={1,3,4,5,6}.
故选:C.

点评 本题考查了补集与并集的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知抛物线y=ax2(a>0)的焦点到准线的距离为2,则a=(  )
A.4B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.据某市地产数据研究院的数据显示,2016年该市新建住宅销售均价走势如图所示,为抑制房价过快上涨,政府从8月份采取宏观调控措施,10月份开始房价得到很好的抑制.

(Ⅰ)地产数据研究院研究发现,3月至7月的各月均价y(万元/平方米)与月份x之间具有较强的线性相关关系,试建立y关于x的回归方程(系数精确到0.01),政府若不调控,依次相关关系预测第12月份该市新建住宅销售均价;
(Ⅱ)地产数据研究院在2016年的12个月份中,随机抽取三个月份的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为X,求X的分布列和数学期望.
参考数据:$\sum_{i=1}^{5}{x}_{i}$=25,$\sum_{i=1}^{5}{y}_{i}$=5.36,$\sum_{i=1}^{5}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=0.64
回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1的左、右焦点分别为F1、F2,且F2为抛物线y2=2px的焦点,设P为两曲线的一个公共点,则△PF1F2的面积为(  )
A.18B.18$\sqrt{3}$C.36D.36$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U=R,集合A={x||x|≤1},B={x|x≤1},则(∁UA)∩B等于(  )
A.{x|x≤-1}B.{x|x<-1}C.{-1}D.{x|-1<x|≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在一个盒子中,放有标号分别为1、2、3的三张卡片.现从这个盒子中随机抽取一张卡片,标号记为x,放回盒子后再随机抽取一张,标号记为y,设ξ=|x-2|+|y-x|
(1)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率;
(2)求随机变量ξ分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=alnx+x2-x,其中a∈R.
(Ⅰ)若a>0,讨论f(x)的单调性;
(Ⅱ)当x≥1时,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一艘轮船在江中向正东方向航行,在点P观测到灯塔A、B在一直线上,并与航线成角α(0°<α<90°),轮船沿航线前进b米到达C处,此时观测到灯塔A在北偏西45°方向,灯塔B在北偏东β(0°<β<90°)方向,0°<α+β<90°,求CB;(结果用α,β,b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数y=sinωx(ω>0)的最小正周期是T,将其图象向左平移$\frac{1}{4}$T后,得到的图象如图所示,则函数y=sinωx(ω>0)的单增区间是(  )
A.[$\frac{7kπ}{6}$-$\frac{7π}{24}$,$\frac{7kπ}{6}$+$\frac{7π}{24}$](k∈Z)B.[$\frac{7kπ}{3}$-$\frac{7π}{24}$,$\frac{7kπ}{3}$+$\frac{7π}{24}$](k∈Z)
C.[$\frac{7kπ}{3}$-$\frac{7π}{12}$,$\frac{7kπ}{3}$+$\frac{7π}{12}$](k∈Z)D.[$\frac{7kπ}{6}$+$\frac{7π}{24}$,$\frac{7kπ}{6}$+$\frac{21π}{24}$](k∈Z)

查看答案和解析>>

同步练习册答案