精英家教网 > 高中数学 > 题目详情
10.设函数y=sinωx(ω>0)的最小正周期是T,将其图象向左平移$\frac{1}{4}$T后,得到的图象如图所示,则函数y=sinωx(ω>0)的单增区间是(  )
A.[$\frac{7kπ}{6}$-$\frac{7π}{24}$,$\frac{7kπ}{6}$+$\frac{7π}{24}$](k∈Z)B.[$\frac{7kπ}{3}$-$\frac{7π}{24}$,$\frac{7kπ}{3}$+$\frac{7π}{24}$](k∈Z)
C.[$\frac{7kπ}{3}$-$\frac{7π}{12}$,$\frac{7kπ}{3}$+$\frac{7π}{12}$](k∈Z)D.[$\frac{7kπ}{6}$+$\frac{7π}{24}$,$\frac{7kπ}{6}$+$\frac{21π}{24}$](k∈Z)

分析 由题意和图象求出函数的周期,由周期公式求出ω的值,由整体思想和正弦函数的单调性求出递增区间.

解答 解:由图象得,$\frac{1}{2}$T=$\frac{7π}{12}$,则T=$\frac{7π}{6}$,
由$T=\frac{2π}{ω}=\frac{7π}{6}$得,ω=$\frac{12}{7}$,
所以y=sin$\frac{12}{7}$x,
由$-\frac{π}{2}+2kπ≤\frac{12}{7}x≤\frac{π}{2}+2kπ(k∈Z)$得,
$-\frac{7π}{24}+\frac{7}{6}kπ≤x≤\frac{7π}{24}+\frac{7}{6}kπ(k∈Z)$,
所以函数的递增区间是$[-\frac{7π}{24}+\frac{7}{6}kπ,\frac{7π}{24}+\frac{7}{6}kπ](k∈Z)$,
故选:A.

点评 本题考查由图象求形如y=Asin(ωx+φ)的解析式,正弦函数的单调性,以及整体思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5}则(∁UA)∪B=(  )
A.{3}B.{4,5}C.{1,3,4,5,6}D.{2,3,4,5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xlnx+(l-k)x+k,k∈R.
(I)当k=l时,求函数f(x)的单调区间;
(Ⅱ)当x>1时,求使不等式f(x)>0恒成立的最大整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知矩形ABCD与直角梯形ABFE所在的平面互相垂直,G是BF的中点,∠AEF=∠BFE=90°,且AD=AE=EF=$\frac{1}{2}$FB=1.
(1)求证:BF⊥平面AGD;
(2)求锐二面角B-CF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设i为虚数单位,复数z满足$\frac{1+i}{z}$=1-i,则复数z=(  )
A.2iB.-2iC.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C的对边分别是a,b,c,其外接圆的半径是1,且满足2(sin2A-sin2C)=($\sqrt{2}$a-b)sinB.
(Ⅰ)求角C的大小;
(Ⅱ)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了解老人们的健康状况,政府从   老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能   自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行  统计,样本分布被制作成如图表:
(1)若采取分层抽样的方法再从样本中的不能自理的老人中抽取16人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(2)估算该市80岁及以上长者占全市户籍人口的百分比;
(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发  放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元;②80岁以下   老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100    元.试估计政府执行此计划的年度预算.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义在$(0,\frac{π}{2})$上的函数,f′(x)为其导函数,且$\frac{f(x)}{sinx}<\frac{{{f^'}(x)}}{cosx}$恒成立,则(  )
A.$f(\frac{π}{2})>2f(\frac{π}{6})$B.$\sqrt{3}f(\frac{π}{4})>\sqrt{2}f(\frac{π}{3})$C.$\sqrt{3}f(\frac{π}{6})<f(\frac{π}{3})$D.$f(1)<2f(\frac{π}{6})sin1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a=($\frac{5}{3}$)${\;}^{\frac{1}{6}}$,b=($\frac{3}{5}$)${\;}^{-\frac{1}{5}}$,c=ln$\frac{5}{3}$,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.b>c>aD.a>c>b

查看答案和解析>>

同步练习册答案