分析 (1)根据平面向量的数量积公式和向量模的公式计算即可.
(2)根据向量的夹角公式计算即可.
解答 解:(1)∵$\overrightarrow{e_1}$,$\overrightarrow{e_2}$为单位向量,且$\overrightarrow{e_1}$,$\overrightarrow{e_2}$的夹角为$\frac{π}{3}$,
∴$\overrightarrow{e_1}$•$\overrightarrow{e_2}$=|$\overrightarrow{e_1}$|•|$\overrightarrow{e_2}$|cos$\frac{π}{3}$=$\frac{1}{2}$,
∵$\overrightarrow a$=$\overrightarrow{e_1}-2\overrightarrow{e_2}$,$\overrightarrow b$=$4\overrightarrow{e_2}$,
∴$\overrightarrow a•\overrightarrow b$=($\overrightarrow{e_1}-2\overrightarrow{e_2}$)•$4\overrightarrow{e_2}$=4$\overrightarrow{e_1}$•$\overrightarrow{e_2}$-8|$\overrightarrow{e_2}$|2=4×$\frac{1}{2}$-8=-6,
$|{\overrightarrow a}|$2=($\overrightarrow{e_1}-2\overrightarrow{e_2}$)2=|$\overrightarrow{e_1}$|2+4|$\overrightarrow{e_2}$|2-4$\overrightarrow{e_1}$•$\overrightarrow{e_2}$=1+1×4-4×$\frac{1}{2}$=3,
∴$|{\overrightarrow a}|$=$\sqrt{3}$
(2)设$\overrightarrow a,\overrightarrow b$的夹角为θ,
∵|$\overrightarrow b$|=|$4\overrightarrow{e_2}$|=4,
∴cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{-6}{\sqrt{3}•4}$=-$\frac{\sqrt{3}}{2}$,
∵0≤θ≤π
∴θ=-$\frac{5π}{6}$.
点评 本题考查了平面向量的应用问题,解题时应根据平面向量的数量积公式进行运算,即可得出正确的答案,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最小值-$\frac{1}{3}$ | B. | 最小值-3 | C. | 最大值-$\frac{1}{3}$ | D. | 最大值-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com