精英家教网 > 高中数学 > 题目详情
在三角形ABC中,若sinA:sinB:sinC=2:3:
19
,则该三角形最大内角等于______.
由正弦定理
a
sinA
=
b
sinB
=
c
sinC

得到a:b:c=sinA:sinB:sinC=2:3:
19

故a=2k,b=3k,c=
19
k,
根据余弦定理cosC=
a2+b2-c2
2ab
得:
cosC=
4k2+9k2-19k2
12k2
=-
1
2
,又C∈(0,180°),
∴C=120°,
则该三角形最大内角等于120°.
故答案为:120°
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在三角形ABC中,若bcosC=(2a-c)cosB.
(1)求角B的大小;  
(2)若b=
7
,a+c=4,求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,若c=2,b=3,∠A=30°,则三角形的面积为.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,若a、b、c成等比数列,且c=
3
2
a
,则2cosB=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,若acosB=bcosA,试判断这个三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安庆三模)在三角形ABC中,若角A、B、C所对的三边a、b、c成等差数列,则下列结论中正确的是
①③④
①③④

①b2≥ac;  ②
1
a
+
1
c
2
b
;   ③b2
a2+c2
2
;   ④tan2
B
2
≤tan
A
2
tan
C
2

查看答案和解析>>

同步练习册答案