精英家教网 > 高中数学 > 题目详情
5.下列函数中是奇函数的为(  )
A.y=2xB.y=-x2C.y=($\frac{1}{3}$)xD.y=log3x

分析 直接利用函数奇偶性的定义判断A,B,由函数图象既不关于原点对称,也不关于y轴对称判断C,D.

解答 解:函数y=2x的定义域为R,且f(-x)=-2x=-f(x),∴f(x)为奇函数;
函数y=-x2的定义域为R,且f(-x)=-(-x)2=-x2=f(x),∴f(x)为偶函数;
由函数y=($\frac{1}{3}$)x的图象既不关于原点对称,也不关于y轴对称,∴函数y=($\frac{1}{3}$)x是非奇非偶函数;
由函数y=log3x的图象既不关于原点对称,也不关于y轴对称,∴函数y=log3x是非奇非偶函数.
故选:A.

点评 本题考查函数奇偶性的判定,判定函数的奇偶性,即可以用定义法,也可以根据图象的对称性判断,该题是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知一个球的表面上有A、B、C三点,且AB=AC=BC=2$\sqrt{3}$,若球心到平面ABC的距离为1,则该球的表面积为(  )
A.20πB.15πC.10πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知${({ax-\frac{1}{x}})^5}$的展开式中各项系数的和为32,则展开式中系数最大的项为(  )
A.270x-1B.270xC.405x3D.243x5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,点P等可能分布在菱形ABCD内,则$\overrightarrow{AP}•\overrightarrow{AC}≤\frac{1}{4}{\overrightarrow{AC}^2}$的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={a,b,d},B={c,d},则A∪B等于(  )
A.{d}B.{a,c}C.{a,b,c}D.{a,b,c,d}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若直线l1:mx+2y+1=0与直线l2:x+y-2=0互相垂直,则实数m的值为(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.阅读右边的程序框图,运行相应的程序,输出的结果为(  )
A.17B.10C.9D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求与直线x+y-1=.0相切,且半径为3的动圆的圆心的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,已知AB=$\sqrt{2}$,AC=$\sqrt{5}$,tan∠BAC=-3,则BC边上的高等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案