精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD-A1B1C1D1中,M、N分别为A1B1、CC1的中点,求异面直线AM和D1N所成角
 
考点:异面直线及其所成的角
专题:空间角
分析:以D为原点建立空间直角坐标系D-xyz,利用向量法能求出异面直线AM和D1N所成角90°.
解答: 解:如图,以D为原点建立空间直角坐标系D-xyz,
设正方体ABCD-A1B1C1D1的棱长为2,
则由题意知A(2,0,0),M(2,1,2),
D1(0,0,2),N(0,2,1),
AM
=(0,1,2),
D1N
=(0,2,-1)

设异面直线AM和D1N所成角为θ,
则cosθ=|cos<
AM
D1N
>|=|
0+2-2
5
|=0,
∴θ=90°.
故答案为:90°.
点评:本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

分别求圆x2+y2=1过下列点的切线方程:
(1)(-1,0);
(2)(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|y=log2(-x2-2x+8)},B={y|y=x+
1
x-1
-2},集合C={x|(ax-
1
a
)(x+4)≤0}.
(1)求A∩B;
(2)若C⊆∁RA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上两动点,F1,F2分别为其左右焦点,直线AB过点F2(c,0),且不垂直于x轴,△ABF1的周长为8,且椭圆的短轴长为2
3

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点P为椭圆C的左端点,连接PA并延长交直线l:x=4于点M.求证:直线BM过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

在以O为极点的极坐标系中,直线l与曲线C的极坐标方程分别是ρcos(θ+
π
4
)=3
2
和ρsin2θ=8cosθ,已知直线l与曲线C交于点A、B,则线段AB的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

“x≤2”是“log2x≤1”的
 
条件(在“充要”、“充分不必要”、“必要不充分”和“既不充分也不必要”中选择一个填空)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①不等式x+
1
x
≥2恒成立;
②在三角形ABC中,如果有sinA=sinB成立,则必有A=B;
③将两个变量所对应的点在平面直角坐标系中描出来,如果所描的点在散点图中没有显示任何关系则称变量间是不相关的;
④等差数列{an}的首项a1=-50,公差d=2,前n项和为Sn,则n=25或n=26是使Sn取到最大值;
其中为正确命题的序号是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z=cosθ-sinθi所对应的点在第四象限,则θ为第
 
象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x2+ax+2a≥0在R上恒成立,则实数a的取值范围为
 

查看答案和解析>>

同步练习册答案