精英家教网 > 高中数学 > 题目详情
14.“-2≤a≤2”是“一元二次方程x2+ax+1=0没有实根”的(  )
A.充要条件B.必要非充分条件
C.充分非必要条件D.非充分非必要条件

分析 一元二次方程x2+ax+1=0没有实根,则△<0.解出即可判断出.

解答 解:若一元二次方程x2+ax+1=0没有实根,
则△=a2-4<0.
解得-2<a<2.
∴“-2≤a≤2”是“一元二次方程x2+ax+1=0没有实根”必要不充分条件.
故选:B.

点评 本题考查了一元二次方程有实数根与判别式的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知两条直线l1:y=m和l2:y=$\frac{9}{m}$(m>0),l1与函数y=|log2x|的图象从左至右相交于点A,B,l2与函数y=|log2x|的图象从左至右相交于C,D.记线段AC和BD在x轴上的投影长度分别为a,b,当m变化时,$\frac{b}{a}$的最小值为(  )
A.32B.$\frac{1}{64}$C.64D.$\frac{1}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=log2x,当定义域为$[\frac{1}{2}\;,\;4]$时,该函数的值域为[-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:A(8,-6),B(3,-1)和C(t,7)
(Ⅰ)若A,B,C三点共线,试求t的值.
(Ⅱ)若点C在直线AB的中垂线上,试求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式ax+b<0的解集A=(-2,+∞),则不等式bx-a≥0的解集为(-∞,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图所示,在△ABC中,AD=DB,F在线段CD上的动点,设$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$,$\overrightarrow{AF}=x\overrightarrow a+y\overrightarrow b$,则$\frac{1}{x}+\frac{4}{y}$的最小值为(  )
A.9B.10C.$6+4\sqrt{2}$D.$9+4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.方程lg(x+1)+lg(x-2)=lg(16-x-x2)的解是x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={x|y=$\sqrt{2x-{x}^{2}}$},B={y|y=2x,x>0},R是实数集,则(∁RB)∩A=[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设l,m,n为三条不同的直线,α为一个平面,下列命题中正确的是(  )
①若l⊥α,则l与α相交      
②若m?α,n?α,l⊥m,l⊥n,则l⊥α
③若l∥m,m∥n,l⊥α,则n⊥α 
④若l∥m,m⊥α,n⊥α,则l∥n.
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

同步练习册答案