精英家教网 > 高中数学 > 题目详情
4.设l,m,n为三条不同的直线,α为一个平面,下列命题中正确的是(  )
①若l⊥α,则l与α相交      
②若m?α,n?α,l⊥m,l⊥n,则l⊥α
③若l∥m,m∥n,l⊥α,则n⊥α 
④若l∥m,m⊥α,n⊥α,则l∥n.
A.①②③B.①②④C.①③④D.②③④

分析 根据空间线面位置关系的有关定理对四个命题逐个进行判断即可找出命题中正确的个数.

解答 解:由于直线与平面垂直是相交的特殊情况,故命题①正确;
由于不能确定直线m,n的相交,不符合线面垂直的判定定理,命题②不正确;
根据平行线的传递性.l∥n,故l⊥α时,一定有n⊥α.即③正确;
由垂直于同一平面的两直线平行得m∥n,再根据平行线的传递性,即可得l∥n.即④正确.
故正确的有①③④共3个.
故选:C.

点评 本题考查空间线面位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.“-2≤a≤2”是“一元二次方程x2+ax+1=0没有实根”的(  )
A.充要条件B.必要非充分条件
C.充分非必要条件D.非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设关于x的一元二次方程x2-ax+b2=0,
(1)将一颗质地均匀的骰子先后抛掷两次,第一次向上的点数记为a,第二次向上的点数记为b,求使得方程有实根的概率;
(2)若a、b是从[1,6]中任取的两个数,求方程无解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求值:
(1)${27^{\frac{2}{3}}}+{16^{-\frac{1}{2}}}-(\frac{1}{2}{)^{-2}}-(-\frac{8}{27}{)^{-\frac{2}{3}}}$
(2)$\frac{1}{2}lg\frac{32}{49}-\frac{4}{3}lg\sqrt{8}+lg\sqrt{245}+{2^{1+{{log}_2}3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.角α 终边经过点(-sin20°,cos20°),则角α的最小正角是(  )
A.110°?B.160°?C.290°?D.340°?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设A、B是直线3x+4y+3=0与圆x2+y2+4y=0的两个交点,则线段AB的垂直平分线的方程是4x-3y-6=0,弦长|AB|为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数$f(x)=\frac{x^2}{{1+{x^2}}}$,那么$f(x)+f({\frac{1}{x}})$=1,f(1)+f(2)+f(3)+…+f(2015)+$f({\frac{1}{2}})+f({\frac{1}{3}})+…+f({\frac{1}{2015}})$=$\frac{4029}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$sinα=-\frac{1}{4},a∈(π,\frac{3π}{2}),cosβ=\frac{4}{5},β∈(\frac{3π}{2},2π)$,则α+β是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=loga$\frac{1-x}{1+x}$(0<a<1).
(1)求函数f(x)的定义域D,并判断f(x)的奇偶性;
(2)如果当x∈(t,a)时,f(x)的值域为(-∞,1),求a与t的值.

查看答案和解析>>

同步练习册答案