精英家教网 > 高中数学 > 题目详情
设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值; 
(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;
(3)写出(-∞,+∞)内函数f(x)的单调区间.
(1)π-4.
(2)4
(3)递增区间为[4k-1,4k+1](k∈Z),单调递减区间[4k+1,4k+3](k∈Z)

试题分析:解:(1)由f(x+2)=-f(x)得,
f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
所以f(x)是以4为周期的周期函数,
∴f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.
(2)由f(x)是奇函数与f(x+2)=-f(x),得:f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)=f(1-x).
故知函数y=f(x)的图象关于直线x=1对称.
又0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.

当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S,则
S=4SOAB=4×=4.
(3)根据(1)(2)可知函数的图形,根据奇偶性以及解析式和对称中心可知,

在一个周期[-1,3]内的图象可知增区间为[-1,1],减区间为[1,3],那么推广到整个实数域可知,都加上周期的整数倍即可,故可知函数f(x)的单调递增区间为[4k-1,4k+1](k∈Z),单调递减区间[4k+1,4k+3](k∈Z)
点评:主要是考查了函数的图象与性质的综合运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

定义域为的函数,其导函数为.若对,均有,则称函数上的梦想函数.
(Ⅰ)已知函数,试判断是否为其定义域上的梦想函数,并说明理由;
(Ⅱ)已知函数)为其定义域上的梦想函数,求的取值范围;
(Ⅲ)已知函数)为其定义域上的梦想函数,求的最大整数值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,任取,定义集合,点满足,设分别表示集合中元素的最大值和最小值,记,则
(Ⅰ)若函数,则           
(Ⅱ)若函数,则的最小正周期为                 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1) 试判断函数上单调性并证明你的结论;
(2) 若恒成立, 求整数的最大值;
(3) 求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 .
(1)若,求的单调区间及的最小值;
(2)若,求的单调区间;
(3)试比较的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数,若关于的方程有三个不同实根,则的取值范围是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

的单调减区间是            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=若f(2-a2)>f(a),则实数a的取值范围是( )
A.(-∞,-1)∪(2,+∞) B.(-1,2)
C.(-2,1) D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,,则,,从小到大的顺序为        

查看答案和解析>>

同步练习册答案