精英家教网 > 高中数学 > 题目详情

【题目】已知正项数列的前项和为,且,数列满足,且

I)求数列的通项公式;

II)令,求数列的前项和

【答案】I;(II

【解析】

I)利用求得;根据求得,从而可知是等差数列,从而利用等差数列通项公式求得结果;利用可证得,可知数列的奇数项成等比、偶数项成等比,分别求解出为奇数和为偶数两种情况下的通项公式即可;(II)由(I)可得,采用分组求和的方式;对采用错位相减法求和;对分为为奇数和为偶数两种情况来讨论;从而可对两个部分加和得到结果.

I)当时,,即

可得

即:

是公差为,首项为的等差数列

由题意得:

两式相除得:

是奇数时,是公比是,首项的等比数列

同理是偶数时是公比是,首项的等比数列

综上:

II,即

的前项和为,则

两式相减得:

的前项和为

综上:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图四棱锥中,底面是边长为2的等边三角形,且,点是棱上的动点.

(I)求证:平面平面

(Ⅱ)当线段最小时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线与曲线满足下列两个条件:直线在点处与曲线相切;曲线在点附近位于直线的两侧,则称直线在点切过曲线.则下列结论正确的是(

A.直线在点切过曲线

B.直线在点切过曲线

C.直线在点切过曲线

D.直线在点切过曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若方程有且只有2个不相等的实数解,则实数k的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以为焦点的椭圆过点.

1)求椭圆方程.

2)设椭圆的左顶点为,线段的垂直平分线交椭圆于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试,先从这些学生的成绩中随机抽取了50名学生的成绩,按照分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分)

1)求频率分布直方图中的的值,并估计50名学生的成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表)

2)用样本估计总体,若该校共有2000名学生,试估计该校这次成绩不低于70分的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,其焦点到准线的距离为2,直线与抛物线交于两点,过分别作抛物线的切线交于点.

(Ⅰ)求的值;

(Ⅱ)若,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三边BCCAAB的中点分别是D(53)E(42)F(11).

1)求△ABC的边AB所在直线的方程及点A的坐标;

2)求△ABC的外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中,平面.

(1)证明:.

(2)求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案