精英家教网 > 高中数学 > 题目详情
在直三棱柱ABC—A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分别是BA、BC的中点,G是AA1上一点,且AC1⊥EG.
(Ⅰ)确定点G的位置;
(Ⅱ)求直线AC1与平面EFG所成角θ的大小.
(Ⅰ)中点(Ⅱ)
解法一:(Ⅰ)以C为原点,分别以CB、CA、CC1x轴、y轴、z轴建立空间直角坐标系,则F(1,0,0),E(1,1,0),A(0,2,0),C1(0,0,2),

设G(0,2,h),则
∴-1×0+1×(-2)+2h="0. " ∴h=1,即G是AA1的中点. 
(Ⅱ)设是平面EFG的法向量,则
所以平面EFG的一个法向量m=(1,0,1)

,即AC1与平面EFG所成角 
解法二:(Ⅰ)取AC的中点D,连结DE、DG,则ED//BC


 
∵BC⊥AC,∴ED⊥AC.

又CC1⊥平面ABC,而ED平面ABC,∴CC1⊥ED.
∵CC1∩AC=C,∴ED⊥平面A1ACC1.
又∵AC1⊥EG,∴AC1⊥DG.
连结A1C,∵AC1⊥A1C,∴A1C//DG.
∵D是AC的中点,∴G是AA­1的中点.
(Ⅱ)取CC1的中点M,连结GM、FM,则EF//GM,
∴E、F、M、G共面.作C1H⊥FM,交FM的延长线于H,∵AC⊥平面BB1C1C,
C1H平面BB1C1C,∴AC⊥G1H,又AC//GM,∴GM⊥C1H. ∵GM∩FM=M,
∴C1H⊥平面EFG,设AC1与MG相交于N点,所以∠C1NH为直线AC1与平面EFG所成角θ.
因为 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知三棱柱中,侧棱垂直于底面,底面△ABC中的中点。
(1)求证:
(2)求证:                     
(3)求
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某几何体的三视图如下图所示,其中左视图是边长为2的正三角形,主视图是矩形且,俯视图中分别是所在边的中点,设的中点.
(1)求其体积;(2)求证:;
(3)边上是否存在点,使?若不存在,说明理由;若存在,请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P—ABCD中,PA⊥底面ABCD,∠, AB∥CD,AD=CD=2AB=2,E,F分别是PC,CD的中点.
(Ⅰ)证明:CD⊥平面BEF;
(Ⅱ)设
k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明PA//平面BDE;              
(2)求二面角B—DE—C的平面角的余弦值;
(3)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BCM为BC的中点
(Ⅰ)证明:AMPM
(Ⅱ)求二面角PAMD的大小;
(Ⅲ)求点D到平面AMP的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,
已知正三棱柱的底面边长是2,D是侧棱的中点,平面ABD和平面的交线为MN.
 (Ⅰ)试证明
 (Ⅱ)若直线AD与侧面所成的角为,试求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=,DC=, F是BE的中点。

求证:(1)  FD∥平面ABC;(2) 平面EAB⊥平面EDB。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PC⊥平面ABC,PM∥CB,∠ACB=120°,PM=AC=1,BC=2,异面直线AM与直线PC所成的角为60°.
(Ⅰ)求二面角M-AC-B大小的正切值;
(Ⅱ)求三棱锥P-MAC的体积.

查看答案和解析>>

同步练习册答案