精英家教网 > 高中数学 > 题目详情
20.如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,依此类推,则标签20152的格点的坐标为(1008,1007).

分析 根据条件寻找规律,归纳出其中奇数平方坐标的位置出现的规律,即可得到答案.

解答 解:观察已知中点(1,0)处标1,即12
点(2,1)处标9,即32
点(3,2)处标25,即52

由此推断
点(n+1,n)处标(2n+1)2
当2n+1=2015时,n=1007
故标签20152的格点的坐标为(1008,1007)
故答案为:(1008,1007);

点评 本题考查的知识点是归纳推理,其中根据已知平面直角坐标系的格点的规则,找出表上数字标签所示的规律,是解答的关键.考查学生的观察能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在△ABC中,角A,B,C的对边长为a,b,c,已知b+c=1+$\sqrt{2}$,∠B=30°,∠C=45°,则a=$\frac{{\sqrt{6}+\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=x$\sqrt{1-{x}^{2}}$的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知在等比数列中,a1=$\frac{1}{8}$,q=2,an=8,则n=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a>1,b>1,(log2a)(log2b)=1,则ab的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.方程x2+2kx+k2-2k+1=0的两个实数根x1,x2满足x12+x22=4,则k的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设f(x)是定义在R上的不恒为零的偶函数,且对任意的实数x都有xf(x+1)=(1+x)f(x)-x,则f($\frac{3}{2}$)的值为(  )
A.-$\frac{5}{2}$B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知平行四边形ABCD的周长为18,AC=$\sqrt{65}$,BD=$\sqrt{17}$,求平行四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{3{x}^{2}-6x+1,x>0}\end{array}\right.$.
(Ⅰ)画出函数f(x)的图象,结合图象,写出函数f(x)的单调区间;
(Ⅱ)结合所画图形,讨论直线y=m与函数f(x)的图象的交点个数.

查看答案和解析>>

同步练习册答案