精英家教网 > 高中数学 > 题目详情
13.抛物线y2=4x的焦点为F,斜率为1的直线l过点F,且与抛物线相交于A,B两点,M是AB中点.
(1)求弦AB的长;
(2)若MH垂直于准线,垂足为H.求∠AHB的度数.

分析 (1)根据抛物线方程求得抛物线的焦点坐标,进而根据点斜式求得直线的方程与抛物线方程联立,消去y,根据韦达定理求得x1+x2=的值,进而根据抛物线的定义可知|AB|=x1+$\frac{p}{2}$+x2+$\frac{p}{2}$=x1+x2+p,求得答案.
(2)过A,B做准线的垂线,垂足分别为P,Q,则|AP|=|AF|,|BQ|=|BF|,得出以AB为直径的圆M与准线相切于H,即可得出结论.

解答 解:(1)抛物线焦点为(1,0),且斜率为1,
则直线方程为y=x-1,代入抛物线方程y2=4x得
x2-6x+1=0,设A(x1,y1),B(x2,y2
∴x1+x2=6
根据抛物线的定义可知|AB|=x1+$\frac{p}{2}$+x2+$\frac{p}{2}$=x1+x2+p=6+2=8;
(2)过A,B做准线的垂线,垂足分别为P,Q,则|AP|=|AF|,|BQ|=|BF|,
∴|AB|=|AF|+|BF|=|AP|+|BQ|,
∵M是AB的中点,
∴|MH|=$\frac{|AP|+|BQ|}{2}$=4,
∴以AB为直径的圆M与准线相切于H,
∴∠AHB=90°.

点评 本题主要考查了直线与圆锥曲线的关系,抛物线的简单性质.关键是:将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系,利用弦长公式即可求得|AB|值,从而解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知f(x)=2sin2x+2sinxcosx,则f(x)的最小正周期和一个单调减区间分别为(  )
A.2π,[$\frac{3π}{8}$,$\frac{7π}{8}$]B.π,[$\frac{3π}{8}$,$\frac{7π}{8}$]C.2π,[-$\frac{π}{8}$,$\frac{3π}{8}$]D.π,[-$\frac{π}{8}$,$\frac{3π}{8}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.己知不等式|x一1|≤1的解集为A,关于x的不等式$\frac{x-a}{x+1}$<0的解集为B,
(1)当a=1时,求集合A∪B;
(2)若对于任意的实数x0∈A,都有x0∈B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC中,a=5,b=4,C=60°,求:
(1)$\overrightarrow{BC}•\overrightarrow{CA}$;
(2)求|$\overrightarrow{AB}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知变量x,y有如下观察数据
x0134
y2.44.54.66.5
若y对x的回归方程是$\stackrel{∧}{y}$=0.83x+a,则a=(  )
A.2.4B.2.84C.3.67D.3.95

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“B=60°”是“△ABC三个内角A、B、C成等差数列”的(  )
A.充分而不必要条件B.充要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.关于x、y的方程组$\left\{\begin{array}{l}(m+1)x-y-3m=0\\ 4x+(m-1)y+7=0\end{array}\right.$(  )
A.有唯一的解B.有无穷多解
C.由m的值决定解的情况D.无解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知F1、F2分别为椭圆C1:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=$\frac{5}{3}$.
(I)求椭圆的方程;
(II)过抛物线C2上一点P(异于原点O)作切线l,交椭圆于A,B两点,Q是OP的中点,求△QAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知如图,PA、PB、PC互相垂直,且长度相等,E为AB中点,则直线CE与平面PAC所成角的正弦值为$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

同步练习册答案