精英家教网 > 高中数学 > 题目详情
17.已知f(x)=2sin2x+2sinxcosx,则f(x)的最小正周期和一个单调减区间分别为(  )
A.2π,[$\frac{3π}{8}$,$\frac{7π}{8}$]B.π,[$\frac{3π}{8}$,$\frac{7π}{8}$]C.2π,[-$\frac{π}{8}$,$\frac{3π}{8}$]D.π,[-$\frac{π}{8}$,$\frac{3π}{8}$]

分析 将f(x)化简,结合三角函数的性质求解即可.

解答 解:由f(x)=2sin2x+2sinxcosx=sin2x-cos2x+1=$\sqrt{2}$sin(2x-$\frac{π}{4}$)+1
∴f(x)的最小正周期T=$\frac{2π}{2}=π$,
由$\frac{π}{2}+2kπ≤2x-\frac{π}{4}≤\frac{3π}{2}+2kπ$单调递减,
解得:$\frac{3π}{8}+kπ≤x≤\frac{7π}{8}+kπ$,(k∈Z)
当k=0时,得f(x)的一个单调减区间[$\frac{3π}{8}$,$\frac{7π}{8}$].
故选B.

点评 本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.函数f(x)的部分图象如图所示,则f(x)的解析式可以是(  )
A.f(x)=x+sinxB.f(x)=$\frac{cosx}{x}$C.f(x)=x(x-$\frac{π}{2}$)(x-$\frac{3π}{2}$)D.f(x)=xcosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使得平面ABD⊥平面BCD,构成四面体A-BCD,则在四面体中,下列说法正确的是(  )
A.平面ABD⊥平面ABCB.平面ACD⊥平面BCDC.平面ABC⊥平面BCDD.平面ACD⊥平面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了探究某市高中理科生在高考志愿中报考“经济类”专业是否与性别有关,现从该市高三理科生中随机抽取50各学生进行调查,得到如下2×2列联表:(单位:人).
报考“经济类”不报“经济类”合计
62430
14620
合计203050
(Ⅰ)据此样本,能否有99%的把握认为理科生报考“经济类”专业与性别有关?
(Ⅱ)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X,求随机变量X的概率分布及数学期望.
附:参考数据:
P(X2≥k)0.050.010
k3.8416.635
(参考公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.抛物线x2=4y的焦点到准线的距离为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}是等差数列,满足a1=2,a4=8,数列{bn}是等比数列,满足b2=4,b5=32.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)求数列{an+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,S为△ABC的面积,且$S=\frac{1}{2}({b^2}+{c^2}-{a^2})$,则tanB+tanC-2tanBtanC=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题p:方程$\frac{x^2}{5-m}+\frac{y^2}{m-1}=1$表示焦点在y轴上的椭圆,则使命题p成立的充分不必要条件是(  )
A.4<m<5B.3<m<5C.1<m<5D.1<m<3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.抛物线y2=4x的焦点为F,斜率为1的直线l过点F,且与抛物线相交于A,B两点,M是AB中点.
(1)求弦AB的长;
(2)若MH垂直于准线,垂足为H.求∠AHB的度数.

查看答案和解析>>

同步练习册答案