精英家教网 > 高中数学 > 题目详情
13.下列四个命题:
(1)利用计算机产生0~1之间的均匀随机数a,则事件“3a-1>0”发生的概率为$\frac{1}{3}$;
(2)“x+y≠0”是“x≠1或y≠-1”的充分不必要条件;
(3)如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β;
(4)设$\vec a,\vec b,\vec c$是非零向量,已知命题p:若$\vec a•\vec b=0$,$\vec b•\vec c=0$,则$\vec a•\vec c=0$;命题q:若$\vec a∥\vec b,\vec b∥\vec c$,则$\vec a∥\vec c$,则“p∨q”是真命题.
其中说法正确的个数是(  )
A.1个B.2个C.3个D.4个

分析 (1)根据几何概型的概率公式进行计算.
(2)根据充分条件和必要条件的定义进行判断.
(3)根据面面垂直的判定定理进行判断.
(4)根据向量的有关概念和性质分别判断p,q的真假,利用复合命题之间的关系即可得到结论.

解答 解:(1)由3a-1>0得a>$\frac{1}{3}$,∵0≤a≤1,∴事件“3a-1>0”发生的概率P=$\frac{1-\frac{1}{3}}{1-0}$=$\frac{2}{3}$,故(1)错误,
(2))“x+y≠0”是“x≠1或y≠-1”的逆否命题为:若x=1且y=-1,则x+y=0,
则x=1且y=-1,是x+y=0成立的充分不必要条件,故)“x+y≠0”是“x≠1或y≠-1”的充分不必要条件,故(2)正确,
(3)如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β的逆否命题是:
平面α内存在直线垂直于平面β,则平面α垂直于平面β,则逆否命题为真命题,
则原命题为真命题,故(3)正确,
(4)若$\overrightarrow{a}$•$\overrightarrow{b}$=0,$\overrightarrow{b}$•$\overrightarrow{c}$=0,则$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$,即($\overrightarrow{a}$-$\overrightarrow{c}$)•$\overrightarrow{b}$=0,则$\overrightarrow{a}$•$\overrightarrow{c}$=0不一定成立,故命题p为假命题,
若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$平行,故命题q为真命题,则“p∨q”是真命题为真命题.,故(4)正确,
故正确的是(2)(3)(4),共有3个,
故选:C

点评 本题主要考查命题的真假判断,涉及几何概型,充分条件和必要条件以及复合命题的真假判断,知识点较多,综合性较强,但难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.双曲线C的中心在坐标原点,顶点为A(0,$\sqrt{2}$),A点关于一条渐近线的对称点是B($\sqrt{2}$,0),斜率为2且过点B的直线l交双曲线C于M,N两点,求:
(1)双曲线的方程;
(2)|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.命题p:函数f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2在R上是增函数,命题q:复数z=(m2+m+1)+(m2-3m)i,m∈R表示的点位于复平面第四象限,如果命题“p∧q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.过点Q(-1,-1)作已知直线l:y=$\frac{1}{4}$x+1的平行线.交双曲线$\frac{{x}^{2}}{4}$-y2=1于点M,N.
(1)证明:点Q是线段MN的中点.
(2)分别过点M,N作双曲线的切线l1,l2,证明:三条直线l,l1,l2相交于同-点.
(3)设P为直线l上一动点.过点P作双曲线的切线PA,PB,切点分别为A,B.证明:点Q在直线AB上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在圆x2+y2-2x-6y=15内,过点E(0,1)的最长弦和最短弦分别是AC和BD,则|AC|•|BD|的值为(  )
A.$80\sqrt{5}$B.$60\sqrt{5}$C.$40\sqrt{5}$D.$20\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线l?平面α,直线m?平面α,命题p:“若直线m⊥α,则m⊥l”的逆命题、否命题、逆否命题中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:?x∈[2,4],x2-2x-2a≤0恒成立,命题q:f(x)=x2-ax+1在区间$[{\frac{1}{2},+∞})$上是增函数.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱锥P-ABC中,E、F、G、H分别是AB、AC、PC、BC的中点,且PA=PB,AC=BC.
(Ⅰ)证明:AB⊥PC;
(Ⅱ)证明:平面PAB∥平面FGH.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow a,\;\overrightarrow b,\;\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow a=({1,\;2})$.
(1)若$|{\overrightarrow c}|=2\sqrt{5}$,且向量$\overrightarrow c$与向量$\overrightarrow a$反向,求$\overrightarrow c$的坐标;
(2)若$|{\overrightarrow b}|=\frac{{\sqrt{5}}}{2}$,且$(\overrightarrow a+2\overrightarrow b)•(2\overrightarrow a-\overrightarrow b)=\frac{15}{4}$,求$\overrightarrow a$与$\overrightarrow b$的夹角θ.

查看答案和解析>>

同步练习册答案