精英家教网 > 高中数学 > 题目详情
19.已知棱长为a的正方体ABCD-A1B1C1D1中,E是BC的中点,F为A1B1的中点.
(1)求证:DE⊥C1F;
(2)求异面直线A1C与C1F所成角的余弦值.

分析 (1)以D为原点,建立空间直线坐标系,利用向量法能证明DE⊥C1F.
(2)求出$\overrightarrow{{A}_{1}C}$=(-a,a,-a),$\overrightarrow{{C}_{1}F}$=(a,-$\frac{a}{2}$,0),利用向量法能求出异面直线A1C与C1F所成角的余弦值.

解答 证明:(1)以D为原点,建立空间直线坐标系
∵棱长为a的正方体ABCD-A1B1C1D1中,
E是BC的中点,F为A1B1的中点.
∴D(0,0,0),E($\frac{a}{2}$,a,0),
C1(0,a,a),F(a,$\frac{a}{2}$,a),
$\overrightarrow{DE}$=($\frac{a}{2},a,0$),
$\overrightarrow{{C}_{1}F}$=(a,-$\frac{a}{2}$,0),
∴$\overrightarrow{DE}•\overrightarrow{{C}_{1}F}$=$\frac{{a}^{2}}{2}-\frac{{a}^{2}}{2}+0=0$,
∴DE⊥C1F.
解:(2)A1(a,0,a),
C(0,a,0),C1(0,a,a),
F(a,$\frac{a}{2}$,a),
$\overrightarrow{{A}_{1}C}$=(-a,a,-a),
$\overrightarrow{{C}_{1}F}$=(a,-$\frac{a}{2}$,0),
设异面直线A1C与C1F所成角为θ,
则cosθ=$\frac{|\overrightarrow{{A}_{1}C}•\overrightarrow{{C}_{1}F}|}{|\overrightarrow{{A}_{1}C}|•|\overrightarrow{{C}_{1}F}|}$=$\frac{\frac{3}{2}{a}^{2}}{\sqrt{3}a•\sqrt{\frac{5}{4}}a}$=$\frac{\sqrt{15}}{5}$.
∴异面直线A1C与C1F所成角的余弦值为$\frac{\sqrt{15}}{5}$.

点评 本题考查线线垂直的证明,考查异面直线所成角和余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.某空间几何体的三视图如图所示,则该空间几何体的体积为$2π+\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为平行四边形,AB=1,BC=$\sqrt{2}$,∠ABC=45°,AE⊥PC,垂足为E.
(Ⅰ)求证:平面AEB⊥平面PCD;
(Ⅱ)若二面角B-AE-D的大小为150°,求侧棱PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在四面体ABCD中,已知棱AC的长为$\sqrt{3}$,其余各棱长都为2,则二面角A-BD-C的大小为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.曲线$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1与$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{25-k}$=1(0<k<9)的关系是(  )
A.有相等的焦距,相同的焦点B.有不同的焦距,不同的焦点
C.有相等的焦距,不同的焦点D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为A1B1,CD的中点.
(1)求|$\overrightarrow{CE}$|
(2)求直线EC与AF所成角的余弦值;
(3)求二面角E-AF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)的定义域是R,f′(x)是f(x)的导数,f(1)=e,g(x)=f′(x)-f(x),g(1)=0,g(x)的导数恒大于零,函数h(x)=f(x)-ex(e=2.71828…)是自然对数的底数)的最小值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.长方体ABCD-A1B1C1D1中,AB=AA1=2,AD=1,则异面直线BC1与AC所成角的余弦值为(  )
A.$\frac{{\sqrt{10}}}{10}$B.$\frac{1}{5}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}满足:a1=$\frac{3}{8}$,an+2-an≤3n,an+6-an≥91•3n,则a2015=(  )
A.$\frac{{3}^{2015}}{2}$+$\frac{3}{2}$B.$\frac{{3}^{2015}}{8}$C.$\frac{{3}^{2015}}{8}$+$\frac{3}{2}$D.$\frac{{3}^{2015}}{2}$

查看答案和解析>>

同步练习册答案