精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)的定义域是R,f′(x)是f(x)的导数,f(1)=e,g(x)=f′(x)-f(x),g(1)=0,g(x)的导数恒大于零,函数h(x)=f(x)-ex(e=2.71828…)是自然对数的底数)的最小值是0.

分析 根据条件判断f′(x)与f(x)的关系,构造函数求出函数的最值,进行比较即可.

解答 解:∵f(1)=e,g(x)=f′(x)-f(x),g(1)=0,
∴g(1)=f′(1)-f(1)=0,则f′(1)=f(1)=e,
g′(x)>0恒成立,
即g(x)为增函数,
则当x>1时,g(x)>g(1)=0,
即f′(x)-f(x)>0,
当x<1时,g(x)<g(1)=0,
即f′(x)-f(x)<0,
构造函数m(x)=$\frac{f(x)}{{e}^{x}}$,
则m′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
则当x>1时,m′(x)>0,此时递增,
当x<1时,m′(x)<0,此时递减,
即函数m(x)取得极小值同时也是最小值m(1)=$\frac{f(1)}{e}$=1
即m(x)=$\frac{f(x)}{{e}^{x}}$≥1,
则f(x)≥ex
则h(x)=f(x)-ex≥ex-ex=0,
即h(x)的最小值为0.
故答案为:0

点评 本题主要考查函数最值的应用,根据导数之间的关系,利用构造法是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=xα,当x∈(1,+∞)时,f(x)-x<0,则(  )
A.0<α<1B.α<1C.α>0D.α<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在三棱锥P-ABC中,△PBC和△PAC是边长为$\sqrt{2}$的等边三角形,AB=2,D是AB中点.
(1)在棱PA上求一点M,使得DM∥面PBC;
(2)求证:面PAB⊥面ABC;
(3)求二面角P-BC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知棱长为a的正方体ABCD-A1B1C1D1中,E是BC的中点,F为A1B1的中点.
(1)求证:DE⊥C1F;
(2)求异面直线A1C与C1F所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.给定椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),称圆x2+y2=a2+b2为椭圆E的“伴随圆”.
已知椭圆E中b=1,离心率为$\frac{\sqrt{6}}{3}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若直线l与椭圆E交于A,B两点,与其“伴随圆”交于C,D两点,当|CD|=$\sqrt{13}$时,求弦长|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于R上可导的任意函数f(x),若满足f(x)=f(2-x),且(x-1)f′(x)≥0,则必有(  )
A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f(1)C.f(0)+f(2)≥2f(1)D.f(0)+f(2)>2f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的一点,且BF⊥平面ACE,AC与BD交于点G.
(1)求证:AE⊥平面BCE;
(2)求证:AE∥平面BFD;
(3)求三棱锥C-BFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.关于函数f(x)=$\sqrt{3}$cos(2x+$\frac{π}{6}$),x∈R,下列结论中正确的个数是(  )
①若f(x1)=f(x2),则x1-x2必是π的整数倍;
②函数f(x)的图象关于直线x=$\frac{5π}{12}$对称;
③函数f(x)在区间[0,$\frac{π}{2}$]上的值域为[-$\frac{3}{2},\frac{3}{2}$];
④函数f(x)的解析式可写为f(x)=$\sqrt{3}sin(2x+\frac{2π}{3})$.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xex-5.
(1)试求函数f(x)的单调区间及最值
(2)设函数g(x)=|f(x-3)+5|,若方程[g(x)]2+tg(x)+1=0(t∈R)有四个实数根,求t的取值范围.

查看答案和解析>>

同步练习册答案