分析 利用奇函数的定义,即可得出结论.
解答 解:①f(x)=x2-|x|+1,x∈[-1,4],定义域不关于原点对称,非奇非偶函数;
②f(x)=ln$\frac{2-x}{2+x}$,f(-x)=ln$\frac{2+x}{2-x}$=-f(x),是奇函数;
③f(x)=$\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$ (a>0,且a≠1),满足f(-x)=-f(x),是奇函数;
④f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x>0}\\{0,x=0}\\{-{x}^{2}-2,x<0}\end{array}\right.$,满足f(-x)=-f(x),是奇函数.
故答案为②③④.
点评 本题考查奇函数的定义,考查学生的计算能力,比较基础.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{19}{2}$ | C. | $\frac{5}{2}$ | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\frac{1}{16}$ | B. | y=-$\frac{1}{16}$ | C. | x=2 | D. | x=-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com