精英家教网 > 高中数学 > 题目详情
18.若$tanα=3tan\frac{π}{7}$,则$\frac{{cos({α-\frac{5π}{14}})}}{{sin({α-\frac{π}{7}})}}$=(  )
A.1B.2C.3D.4

分析 利用两角和与差的三角函数以及诱导公式化简所求的表达式,代入求解即可.

解答 解:$tanα=3tan\frac{π}{7}$,
则$\frac{{cos({α-\frac{5π}{14}})}}{{sin({α-\frac{π}{7}})}}$=$\frac{cosαsin\frac{π}{7}+sinαcos\frac{π}{7}}{sinαcos\frac{π}{7}-cosαsin\frac{π}{7}}$=$\frac{tan\frac{π}{7}+tanα}{tanα-tan\frac{π}{7}}$=2.
故选:B.

点评 本题考查两角和与差的三角函数,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.$\sqrt{1-2sin(\frac{π}{2}+2)cos(\frac{π}{2}+2)}$的值是(  )
A.sin2-cos2B.cos2-sin2C.-(sin2+cos2)D.sin2+cos2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a=2${\;}^{\frac{1}{3}}$,b=log3$\frac{2}{3}$,c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,则(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列函数为奇函数的是②③④
①f(x)=x2-|x|+1 x∈[-1,4];
②f(x)=ln$\frac{2-x}{2+x}$;
③f(x)=$\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$ (a>0,且a≠1);
④f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x>0}\\{0,x=0}\\{-{x}^{2}-2,x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知长方体ABCD-A1B1C1D1的外接球O的体积为$\frac{32π}{3}$,其中BB1=2,则三棱锥O-ABC的体积的最大值为(  )
A.1B.3C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)在R上存在导函数f'(x),对任意的实数x都有f(x)=4x2-f(-x),当x∈(-∞,0)时,$f'(x)+\frac{1}{2}<4x$.若f(m+1)≤f(-m)+4m+2,则实数m的取值范围是(  )
A.$[{-\frac{1}{2},+∞})$B.$[{-\frac{3}{2},+∞})$C.[-1,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:对任意x∈R,有cosx≤1,则(  )
A.¬p:存在x∈R,使cosx>1B.¬p:对任意x∈R,有cosx>1
C.¬p:存在x∈R,使cosx≥1D.¬p:对任意x∈R,有cosx≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过点(2,1)作圆(x-1)2+(y+2)2=25的弦,其中最短的弦所在的直线方程为(  )
A.3x-y-5=0B.x+3y-1=0C.2x-y-3=0D.x+3y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“0≤a<2”是“ax2+2ax+1>0的解集是实数集R”的(  )
A.充分而非必要条件B.必要而非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

同步练习册答案