| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 利用两角和与差的三角函数以及诱导公式化简所求的表达式,代入求解即可.
解答 解:$tanα=3tan\frac{π}{7}$,
则$\frac{{cos({α-\frac{5π}{14}})}}{{sin({α-\frac{π}{7}})}}$=$\frac{cosαsin\frac{π}{7}+sinαcos\frac{π}{7}}{sinαcos\frac{π}{7}-cosαsin\frac{π}{7}}$=$\frac{tan\frac{π}{7}+tanα}{tanα-tan\frac{π}{7}}$=2.
故选:B.
点评 本题考查两角和与差的三角函数,考查计算能力,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | sin2-cos2 | B. | cos2-sin2 | C. | -(sin2+cos2) | D. | sin2+cos2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | a>c>b | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{-\frac{1}{2},+∞})$ | B. | $[{-\frac{3}{2},+∞})$ | C. | [-1,+∞) | D. | [-2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ¬p:存在x∈R,使cosx>1 | B. | ¬p:对任意x∈R,有cosx>1 | ||
| C. | ¬p:存在x∈R,使cosx≥1 | D. | ¬p:对任意x∈R,有cosx≥1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3x-y-5=0 | B. | x+3y-1=0 | C. | 2x-y-3=0 | D. | x+3y-5=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而非必要条件 | B. | 必要而非充分条件 | ||
| C. | 充要条件 | D. | 既非充分也非必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com