精英家教网 > 高中数学 > 题目详情
8.$\sqrt{1-2sin(\frac{π}{2}+2)cos(\frac{π}{2}+2)}$的值是(  )
A.sin2-cos2B.cos2-sin2C.-(sin2+cos2)D.sin2+cos2

分析 根据诱导公式以及三角函数在各个象限中的符号,化简所给的式子,可得结果.

解答 解:$\sqrt{1-2sin(\frac{π}{2}+2)cos(\frac{π}{2}+2)}$=$\sqrt{1-2cos2•(-sin2)}$=$\sqrt{1+2sin2cos2}$=|sin2+cos2|=sin2+cos2,
故选:D.

点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0)的一条渐近线为y=$\sqrt{3}$x,则离心率e等于(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}是以t为首项,以2为公差的等差数列,数列{bn}满足2bn=(n+1)an.若对n∈N*都有bn≥b4成立,则实数t的取值范围是[-18,-14].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若实数x∈Z,y∈Z,满足$\left\{\begin{array}{l}{x<2}\\{y≤3}\\{x+y≥1}\end{array}\right.$,则S=2x+y-1的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在R上可导的函数f(x)的图象如图示,f′(x)为函数f(x)的导数,则关于x的不等式x•f′(x)<0的解集为(  )
A.(-∞,-1)∪(0,1)B.(-2,-1)∪(1,2)C.(-1,0)∪(1,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列结论中正确的个数是(  )
①当a<0时,(a2)${\;}^{\frac{3}{2}}$=a3
②$\root{n}{{a}^{n}}$=|a|(n>1,n∈N)
③函数y=(x-2)${\;}^{\frac{1}{2}}$-(3x-7)0的定义域是[2,+∞);
④计算[(-$\sqrt{2}$)2]${\;}^{-\frac{1}{2}}$的结果是$\frac{\sqrt{2}}{2}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在底面为正三角形的三棱柱ABC-A1B1C1中,AB=2,AA1⊥平面ABC,E,F分别为BB1,AC的中点.
(1)求证:BF∥平面A1EC;
(2)若AA1=2$\sqrt{2}$,求二面角C-EA1-A的大小.
(2)若AA1=2$\sqrt{2}$,求三棱锥C1-A1EC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}的首项为$\frac{1}{2}$,Sn为数列的前n项和,若S6=2S4,则a10=(  )
A.$\frac{1}{3}$B.$\frac{19}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若$tanα=3tan\frac{π}{7}$,则$\frac{{cos({α-\frac{5π}{14}})}}{{sin({α-\frac{π}{7}})}}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案