精英家教网 > 高中数学 > 题目详情
11.记不等式组$\left\{\begin{array}{l}4x+3y≥10\\ x≤5\\ y≤4\end{array}\right.$表示的平面区域为D,过区域D中任意一点P作圆x2+y2=1的两条切线,切点分别为A,B,则当∠APB的最大时,cos∠APB为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 作出不等式组对应的平面区域,根据数形结合求确定当∠PAB最大时点P的位置,利用余弦函数的倍角公式,即可求出结论.

解答 解:作出不等式组$\left\{\begin{array}{l}4x+3y≥10\\ x≤3\\ y≤4\end{array}\right.$表示的平面区域D,如图所示,
要使∠APB最大,
则∠OPB最大,
∵sin∠OPB=$\frac{OB}{OP}$=$\frac{1}{OP}$,
∴只要OP最小即可.
则P到圆心的距离最小即可,
由图象可知当OP垂直直线3x+4y-10=0,此时|OP|=$\frac{|-10|}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{10}{5}$=2,|OA|=1,
设∠APB=α,则∠APO=$\frac{α}{2}$,即sin$\frac{α}{2}$=$\frac{OA}{OP}$=$\frac{1}{2}$,
此时cosα=1-2sin2$\frac{α}{2}$=1-2×($\frac{1}{2}$)2=1-$\frac{1}{2}$=$\frac{1}{2}$,
即cos∠APB=$\frac{1}{2}$.
故选:D.

点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键,要求熟练掌握两角和的倍角公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.数列{an}中,Sn为其前n项和,若Sn=2an-3,则此数列的通项公式an=3•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若16x=9y=4,则xy等于(  )
A.log43B.log49C.log92D.log94

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,a,b,c分别是角A,B,C所对边的边长,若cosC+sinC-$\frac{2}{cosB+sinB}$=0,则$\frac{a+b}{c}$的值是(  )
A.$\sqrt{2}$-1B.$\sqrt{2}$+1C.$\sqrt{3}$+1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列函数为奇函数的是②③④
①f(x)=x2-|x|+1 x∈[-1,4];
②f(x)=ln$\frac{2-x}{2+x}$;
③f(x)=$\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$ (a>0,且a≠1);
④f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x>0}\\{0,x=0}\\{-{x}^{2}-2,x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b为实数,函数f(x)=x2+ax+1,且函数y=f(x+1)是偶函数,函数g(x)=-b•f(f(x+1))+(3b-1)•f(x+1)+2在区间(-∞,-2]上的减函数,且在区间(-2,0)上是增函数
(1)求函数f(x)的解析式;
(2)求实数b的值;
(3)设h(x)=f(x+1)-2qx+1+2q,问是否存在实数q,使得h(x)在区间[0,2]上有最小值为-2?若存在,求出q的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)在R上存在导函数f'(x),对任意的实数x都有f(x)=4x2-f(-x),当x∈(-∞,0)时,$f'(x)+\frac{1}{2}<4x$.若f(m+1)≤f(-m)+4m+2,则实数m的取值范围是(  )
A.$[{-\frac{1}{2},+∞})$B.$[{-\frac{3}{2},+∞})$C.[-1,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=4x3-ax2-2bx+3的两个极值点为1,-$\frac{2}{3}$,则ab的值为(  )
A.8B.6C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法正确的是(  )
A.若p∧q为假命题,则p、q均为假命题
B.命题“若x2=1,则x=1”为真命题
C.命题“若x=y,则sinx=siny”的逆否命题为真命题
D.命题“存在一个实数x,使不等式x2-3x+6<0成立”为真命题

查看答案和解析>>

同步练习册答案