精英家教网 > 高中数学 > 题目详情
16.已知a,b为实数,函数f(x)=x2+ax+1,且函数y=f(x+1)是偶函数,函数g(x)=-b•f(f(x+1))+(3b-1)•f(x+1)+2在区间(-∞,-2]上的减函数,且在区间(-2,0)上是增函数
(1)求函数f(x)的解析式;
(2)求实数b的值;
(3)设h(x)=f(x+1)-2qx+1+2q,问是否存在实数q,使得h(x)在区间[0,2]上有最小值为-2?若存在,求出q的值;若不存在,说明理由.

分析 (1)利用函数y=f(x+1)是偶函数,求函数f(x)的解析式;
(2)利用复合函数的单调性,求实数b的值;
(3)分类讨论,求出函数的最小值,利用h(x)在区间[0,2]上有最小值为-2,得出结论.

解答 解:(1)∵函数y=f(x+1)是偶函数,
∴(x+1)2+a(x+1)+1=(-x+1)2+a(-x+1)+1,
∴4x+2ax=0,
∴a=-2,
∴f(x)=(x-1)2
(2)g(x)=-b•f(f(x+1))+(3b-1)•f(x+1)+2=-bx4+(5b-1)x2+2-b,
令t=x2,u(t)=-bt2+(5b-1)t-(b-2),
在区间(-∞,-2]上,t=x2是减函数,且t∈[4,+∞),由g(x)是减函数,可知u(t)为增函数;
在区间(-2,0)上,t=x2是减函数,且t∈(0,4),由g(x)是增函数,可知u(t)为减函数,
∴由u(t)在(0,4)上是减函数,(4,+∞)上是增函数,
可得二次函数开口向上,b<0,且-$\frac{5b-1}{-2b}$=4,∴b=-$\frac{1}{3}$;
(3)h(x)=f(x+1)-2qx+1+2q=x2=2qx+2q,x∈[0,2].
q<0,ymin=h(0)=1+2q=-2,q=-$\frac{3}{2}$;
0≤q≤2,ymin=h(q)=-q2+2q+1=-2,∴q=3或-1,舍去;
q>2,ymin=h(2)=-2q+5=-2,q=$\frac{7}{2}$,
综上所述,q=-$\frac{3}{2}$或$\frac{7}{2}$.

点评 本题考查函数的性质,考查函数解析式的求解,考查学生的最值,正确分类讨论是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,平行四边形ABCD中,点E在线段AD上,BE与AC交于点F,设$\overrightarrow{AB}=a,\overrightarrow{AD}=b$.
(I)若E为AD的中点,用向量$\overrightarrow{a},\overrightarrow{b}$表示$\overrightarrow{CE}+\overrightarrow{BE}$;
(II)用向量的方法探究:在线段AD上是否存在点E,使得点F恰好为BE的一个三等分点,若有,求出满足条件的所有点E的位置;若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如果定义在R上的函数f(x)满足:对于任意x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称f(x)为“H函数”.给出下列函数:①y=-x3+x+1;②y=3x-2(sinx-cosx);③y=ex+1;④$f(x)=\left\{\begin{array}{l}ln|x|,x≠0\\ 0,x=0.\end{array}\right.$
其中“H函数”的个数是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设实数m,n满足$\frac{6}{m}+\frac{4}{n}=\sqrt{2mn}$,则mn的最小值为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.记不等式组$\left\{\begin{array}{l}4x+3y≥10\\ x≤5\\ y≤4\end{array}\right.$表示的平面区域为D,过区域D中任意一点P作圆x2+y2=1的两条切线,切点分别为A,B,则当∠APB的最大时,cos∠APB为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设$lnx=\frac{{{{ln}^2}sinα}}{lnb},lny=\frac{{{{ln}^2}cosα}}{lnb},lnz=\frac{{{{ln}^2}sinαcosα}}{lnb}$,若$α∈({\frac{π}{4},\frac{π}{2}}),b∈({0,1})$,则x,y,z的大小关系为(  )
A.x>y>zB.y>x>zC.z>x>yD.x>z>y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在$(2{x}^{2}-\frac{1}{\sqrt{x}})^{6}$的展开式中,含x7的项的系数是(  )
A.60B.160C.180D.240

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线x+ay+6=0与直线(a-2)x+3y+2a=0平行,则a的值为(  )
A.3 或-1B.3C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.△ABC的内角A,B,C的对边分别为a,b,c,若$cosA=-\frac{3}{5}$,$sinC=\frac{1}{2}$,c=1,则△ABC的面积为$\frac{8\sqrt{3}-6}{25}$.

查看答案和解析>>

同步练习册答案