7£®Èç¹û¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×㣺¶ÔÓÚÈÎÒâx1¡Ùx2£¬¶¼ÓÐx1f£¨x1£©+x2f£¨x2£©£¾x1f£¨x2£©+x2f£¨x1£©£¬Ôò³Æf£¨x£©Îª¡°Hº¯Êý¡±£®¸ø³öÏÂÁк¯Êý£º¢Ùy=-x3+x+1£»¢Úy=3x-2£¨sinx-cosx£©£»¢Ûy=ex+1£»¢Ü$f£¨x£©=\left\{\begin{array}{l}ln|x|£¬x¡Ù0\\ 0£¬x=0.\end{array}\right.$
ÆäÖС°Hº¯Êý¡±µÄ¸öÊýÊÇ¢Ú¢Û£®

·ÖÎö ²»µÈʽx1f£¨x1£©+x2f£¨x2£©£¾x1f£¨x2£©+x2f£¨x1£©µÈ¼ÛΪ£¨x1-x2£©[f£¨x1£©-f£¨x2£©]£¾0£¬¼´Âú×ãÌõ¼þµÄº¯ÊýΪµ¥µ÷µÝÔöº¯Êý£¬ÅжϺ¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃµ½½áÂÛ£®

½â´ð ½â£º¡ß¶ÔÓÚÈÎÒâ¸ø¶¨µÄ²»µÈʵÊýx1£¬x2£¬²»µÈʽx1f£¨x1£©+x2f£¨x2£©£¾x1f£¨x2£©+x2f£¨x1£©ºã³ÉÁ¢£¬
¡à²»µÈʽµÈ¼ÛΪ£¨x1-x2£©[f£¨x1£©-f£¨x2£©]£¾0ºã³ÉÁ¢£¬
¼´º¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄÔöº¯Êý£®
¢Ùy=-x3+x+1£»y'=-3x2+1£¬Ôòº¯ÊýÔÚ¶¨ÒåÓòÉϲ»µ¥µ÷£®
¢Úy=3x-2£¨sinx-cosx£©£»y¡¯=3-2£¨cosx+sinx£©=3-2$\sqrt{2}$sin£¨x+$\frac{¦Ð}{4}$£©£¾0£¬º¯Êýµ¥µ÷µÝÔö£¬Âú×ãÌõ¼þ£®
¢Ûy=ex+1ΪÔöº¯Êý£¬Âú×ãÌõ¼þ£®
£»¢Ü$f£¨x£©=\left\{\begin{array}{l}ln|x|£¬x¡Ù0\\ 0£¬x=0.\end{array}\right.$
µ±x£¾0ʱ£¬º¯Êýµ¥µ÷µÝÔö£¬µ±x£¼0ʱ£¬º¯Êýµ¥µ÷µÝ¼õ£¬²»Âú×ãÌõ¼þ£®
×ÛÉÏÂú×ã¡°Hº¯Êý¡±µÄº¯ÊýΪ¢Ú¢Û£¬
¹Ê´ð°¸Îª£º¢Ú¢Û£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éº¯Êýµ¥µ÷ÐÔµÄÓ¦Ó㬽«Ìõ¼þת»¯Îªº¯ÊýµÄµ¥µ÷ÐÔµÄÐÎʽÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÉèÕýËÄÀâ×¶µÄµ×Ãæ±ß³¤Îª4$\sqrt{2}$£¬²àÀⳤΪ5£¬Ôò¸ÃËÄÀâ×¶µÄÌå»ýΪ32£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª{an}ΪµÈ²îÊýÁУ¬SnΪÆäǰnÏîºÍ£¬Èôa1=1£¬S2=a3£¬ÔòSn=$\frac{1}{2}$n2+$\frac{1}{2}$n£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®¼¯ºÏM={x|log2£¨1-x£©£¼0}£¬¼¯ºÏN={x|-1¡Üx¡Ü1}£¬ÔòM¡ÉNµÈÓÚ£¨¡¡¡¡£©
A£®[-1£¬1£©B£®[0£¬1£©C£®[-1£¬1]D£®£¨0£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èô16x=9y=4£¬ÔòxyµÈÓÚ£¨¡¡¡¡£©
A£®log43B£®log49C£®log92D£®log94

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖª$\left\{\begin{array}{l}{x-4y¡Ü-3}\\{3x+5y¡Ü25}\\{x¡Ý1}\end{array}\right.$£¬£¨±¾Ìâ²»×÷ͼ²»µÃ·Ö£©
£¨1£©Çóz=2x+yµÄ×î´óÖµºÍ×îСֵ£»
£¨2£©Çóz=$\frac{y+1}{x+1}$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðÊǽÇA£¬B£¬CËù¶Ô±ßµÄ±ß³¤£¬ÈôcosC+sinC-$\frac{2}{cosB+sinB}$=0£¬Ôò$\frac{a+b}{c}$µÄÖµÊÇ£¨¡¡¡¡£©
A£®$\sqrt{2}$-1B£®$\sqrt{2}$+1C£®$\sqrt{3}$+1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªa£¬bΪʵÊý£¬º¯Êýf£¨x£©=x2+ax+1£¬ÇÒº¯Êýy=f£¨x+1£©ÊÇżº¯Êý£¬º¯Êýg£¨x£©=-b•f£¨f£¨x+1£©£©+£¨3b-1£©•f£¨x+1£©+2ÔÚÇø¼ä£¨-¡Þ£¬-2]Éϵļõº¯Êý£¬ÇÒÔÚÇø¼ä£¨-2£¬0£©ÉÏÊÇÔöº¯Êý
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÇóʵÊýbµÄÖµ£»
£¨3£©Éèh£¨x£©=f£¨x+1£©-2qx+1+2q£¬ÎÊÊÇ·ñ´æÔÚʵÊýq£¬Ê¹µÃh£¨x£©ÔÚÇø¼ä[0£¬2]ÉÏÓÐ×îСֵΪ-2£¿Èô´æÔÚ£¬Çó³öqµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£©ÔÚx¡Ê£¨0£¬7¦Ð£©ÄÚÈ¡µÃÒ»¸ö×î´óÖµºÍÒ»¸ö×îСֵ£¬ÇÒµ±x=¦Ðʱ£¬f£¨x£©ÓÐ×î´óÖµ3£¬µ±x=6¦Ðʱ£¬f£¨x£©ÓÐ×îСֵ-3£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýmÂú×ãAsin£¨$¦Ø\sqrt{-{m^2}+2m+3}$+¦Õ£©£¾Asin£¨¦Ø$\sqrt{-{m^2}+4}$+¦Õ£©£¿Èô´æÔÚ£¬Çó³öʵÊýmµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸