精英家教网 > 高中数学 > 题目详情
15.集合M={x|log2(1-x)<0},集合N={x|-1≤x≤1},则M∩N等于(  )
A.[-1,1)B.[0,1)C.[-1,1]D.(0,1)

分析 化简集合M、N,根据交集的定义写出M∩N即可.

解答 解:集合M={x|log2(1-x)<0}
={x|1>1-x>0}
={x|0<x<1}
=(0,1);
集合N={x|-1≤x≤1}
=[-1,1];
所以M∩N=(0,1).
故选:D.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知命题p:函数f(x)=lg(ax2-4x+a)的定义域为R;命题q:不等式2x2+x>2+ax,对?x∈(-∞,-1)上恒成立.
(1)若命题p为真命题,求实数a的取值范围;
(2)若“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,平行四边形ABCD中,点E在线段AD上,BE与AC交于点F,设$\overrightarrow{AB}=a,\overrightarrow{AD}=b$.
(I)若E为AD的中点,用向量$\overrightarrow{a},\overrightarrow{b}$表示$\overrightarrow{CE}+\overrightarrow{BE}$;
(II)用向量的方法探究:在线段AD上是否存在点E,使得点F恰好为BE的一个三等分点,若有,求出满足条件的所有点E的位置;若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+4xy,f(1)=1,则f(-2)=(  )
A.-2B.2C.6D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}ln({1-x}),x<0\\{({x-1})^3}+1,x≥0\end{array}$,若f(x)≥ax恒成立,则实数a的取值范围是(  )
A.$[{0,\frac{2}{3}}]$B.$[{0,\frac{3}{4}}]$C.[0,1]D.$[{0,\frac{3}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}中,a1=-2,前n项和Sn满足an+1+3Sn+2=0(n∈N*).
(1)求数列{an}的通项公式;
(2)是否存在整数对(m,n)满足$a_n^2-m{a_n}-4m-8=0$?若存在,求出所有满足题意的整数对(m,n);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如果定义在R上的函数f(x)满足:对于任意x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称f(x)为“H函数”.给出下列函数:①y=-x3+x+1;②y=3x-2(sinx-cosx);③y=ex+1;④$f(x)=\left\{\begin{array}{l}ln|x|,x≠0\\ 0,x=0.\end{array}\right.$
其中“H函数”的个数是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设实数m,n满足$\frac{6}{m}+\frac{4}{n}=\sqrt{2mn}$,则mn的最小值为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线x+ay+6=0与直线(a-2)x+3y+2a=0平行,则a的值为(  )
A.3 或-1B.3C.-1D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案