分析 (1)根据题意,函数的最值可以确定A,根据在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3,当x=6π时,y有最小值-3,可以确定函数的周期,从而求出ω的值和φ的值,从而求得函数的解析式;
(2)根据(1)所求得的ω和φ的值,分析ω $\sqrt{{-m}^{2}+2m+3}$+φ和ω $\sqrt{{-m}^{2}+4}$+φ的范围,确定函数在该区间上的单调性,即可求得结果.
解答 解:(1)由题意可知:A=3,$\frac{1}{2}$T=5π,
∴T=10π,
则ω=$\frac{2π}{T}$=$\frac{2π}{10π}$=$\frac{1}{5}$,
∴y=3sin($\frac{1}{5}$x+φ),
∵点(π,3)在此函数图象上,
∴3sin($\frac{π}{5}$+φ)=3,$\frac{π}{5}$+φ=$\frac{π}{2}$+2kπ,k∈Z.
φ=$\frac{3π}{10}$+2kπ,k∈Z.
∵|φ|<$\frac{π}{2}$,
∴φ=$\frac{3π}{10}$.
∴y=3sin($\frac{1}{5}$x+$\frac{3π}{10}$);
(2)∵ω=$\frac{1}{5}$,ϕ=$\frac{3π}{10}$,
∴ω $\sqrt{{-m}^{2}+2m+3}$+ϕ=$\frac{1}{5}$$\sqrt{{-(m-1)}^{2}+4}$+$\frac{3π}{10}$∈(0,$\frac{π}{2}$),
ω $\sqrt{{-m}^{2}+4}$+ϕ=$\frac{1}{5}$$\sqrt{{-m}^{2}+4}$+$\frac{3π}{10}$∈(0,$\frac{π}{2}$),
而y=sint在(0,$\frac{π}{2}$)上是增函数
∴$\frac{1}{5}$$\sqrt{{-m}^{2}+2m+3}$+$\frac{3π}{10}$>$\frac{1}{5}$$\sqrt{{-m}^{2}+4}$+$\frac{3π}{10}$,
∴$\sqrt{{-m}^{2}+2m+3}$>$\sqrt{{-m}^{2}+4}$,
∴$\left\{\begin{array}{l}{{-m}^{2}+2m+3≥0}\\{{-m}^{2}+4≥0}\\{{-m}^{2}+2m+3>{-m}^{2}+4}\end{array}\right.$,
∴$\left\{\begin{array}{l}{-1≤m≤3}\\{-2≤m≤2}\\{m>\frac{1}{2}}\end{array}\right.$,解得:$\frac{1}{2}$<m≤2.
∴m的取值范围是$\frac{1}{2}$<m≤2.
点评 本题考查根据y=Asin(ωx+φ)的图象求函数的解析式以及求函数的单调区间,问题(2)的设置,增加了题目的难度和新意,易错点在于对ω $\sqrt{{-m}^{2}+2m+3}$+φ∈(0,$\frac{π}{2}$),ω $\sqrt{{-m}^{2}+4}$+φ∈(0,$\frac{π}{2}$)的分析与应用,考查灵活应用知识分析解决问题的能力和运算能力,体现了转化的数学思想方法,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 60 | B. | 160 | C. | 180 | D. | 240 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{1}{4}$ | C. | $-\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com