精英家教网 > 高中数学 > 题目详情
7.甲7:00~8:00到,乙7:20~7:50到,先到者等候另一人10分钟,过时离去.则 求两人会面的概率为$\frac{1}{3}$.

分析 由题意知本题是一个几何概型,试验包含的所有事件是Ω={(x,y)|7<x<8,7$\frac{1}{3}$<y<8$\frac{5}{6}$},做出事件对应的集合表示的面积,写出满足条件的事件是A={(x,y)|7<x<8,7$\frac{1}{3}$<y<8$\frac{5}{6}$,|x-y|<$\frac{1}{6}$ },算出事件对应的集合表示的面积,根据几何概型概率公式得到结果

解答 解:设甲到达的时间为x,乙到达的时间为y,则x,y满足Ω={(x,y)|7<x<8,7$\frac{1}{3}$<y<8$\frac{5}{6}$},
所构成的区域为长为1宽为$\frac{5}{6}-\frac{1}{3}=\frac{1}{2}$的矩形,面积为$\frac{1}{2}$;
记“其中一人先到达后最多等候另一人15分钟”为事件A,则A所满足的条件为:A={(x,y)|7<x<8,7$\frac{1}{3}$<y<8$\frac{5}{6}$,|x-y|<$\frac{1}{6}$ },
其面积为$\frac{1}{2}$-$\frac{1}{2}×\frac{1}{2}×\frac{1}{2}$$-\frac{1}{2}×(\frac{1}{6}+\frac{2}{3})×\frac{1}{2}$=$\frac{1}{6}$,
由几何概率的计算公式可得,P(A)=$\frac{\frac{1}{6}}{\frac{1}{2}}=\frac{1}{3}$;
故答案为:$\frac{1}{3}$.

点评 本题主要考查了与面积有关的几何概率的判断及利用几何概率公式求解概率的应用,属于中档试题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在x∈(0,7π)内取得一个最大值和一个最小值,且当x=π时,f(x)有最大值3,当x=6π时,f(x)有最小值-3.
(1)求函数f(x)的解析式;
(2)是否存在实数m满足Asin($ω\sqrt{-{m^2}+2m+3}$+φ)>Asin(ω$\sqrt{-{m^2}+4}$+φ)?若存在,求出实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.以原点为顶点,x轴为对称轴的抛物线的焦点在直线2x-4y-11=0上,则此抛物线的方程是(  )
A.y2=11xB.y2=-11xC.y2=22xD.y2=-22x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.等差数列{an}中,a2=15,a4=9,则S5=60.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=-x3+ax在区间[-2,1]上是单调增函数,则实数a的最小值是(  )
A.12B.0C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知x,y满足$\left\{\begin{array}{l}2x-y≥0\\ x+y-1≥0\\ x-2y-1≤0\end{array}\right.$,则$\frac{y-1}{x+1}$的取值范围是(  )
A.$[-\frac{5}{2},-\frac{1}{4}]$B.$[-\frac{5}{2},2]$C.$[-\frac{1}{2},2)$D.$[-\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.从[0,2]中任取一个数x,从[0,3]中任取一个数y,则使x2+y2≤4的概率为(  )
A.$\frac{1}{2}$B.$\frac{π}{9}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,底面ABCD是直角梯形,AD∥BC,∠BAD=90°,AD=AA1=3,BC=1,AB=$\sqrt{3}$,E1为A1B1中点.
(1)证明:B1D∥平面AD1E1
(2)求平面ACD1和平面CDD1C1所成角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知命题p:|x-$\frac{3}{4}$|≤$\frac{1}{4}$,命题q:(x-a)(x-a-1)≤0,若p是q成立的充分非必要条件,则实数a的取值范围是[0,$\frac{1}{2}$].

查看答案和解析>>

同步练习册答案