精英家教网 > 高中数学 > 题目详情
2.如图,在四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,底面ABCD是直角梯形,AD∥BC,∠BAD=90°,AD=AA1=3,BC=1,AB=$\sqrt{3}$,E1为A1B1中点.
(1)证明:B1D∥平面AD1E1
(2)求平面ACD1和平面CDD1C1所成角(锐角)的余弦值.

分析 (1)连结A1D交AD1于G,四边形ADD1A1为平行四边形,从而B1D∥E1G,由此能证明B1D∥平面AD1E1
(2)以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,求出平面ACD1的一个法向量和平面CDD1C1的一个法向量,由此利用向量法能求出平面ACD1和平面CDD1C1所成角(锐角)的余弦值.

解答 (1)证明:连结A1D交AD1于G,
∵ABCD-A1B1C1D1为四棱柱,
∴四边形ADD1A1为平行四边形,
∴G为A1D的中点,
又E1为A1B1中点,∴E1G为△A1B1D的中位线,
从而B1D∥E1G.
又∵B1D?平面AD1E1,E1G?平面AD1E1
∴B1D∥平面AD1E1
(2)解:∵AA1⊥底面ABCD,AB?面ABCD,AD?面ABCD,
∴AA1⊥AB,AA1⊥AD,又∠BAD=90°,
∴AB,AD,AA1两两垂直.
如图,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系.
设AB=t,则A(0,0,0),B(t,0,0),C(t,1,0),
D(0,3,0),C1(t,1,3),D1(0,3,3).
从而$\overrightarrow{AC}$=(t,1,0),$\overrightarrow{BD}$=(-t,3,0).
∵AC⊥BD,∴$\overrightarrow{AC}•\overrightarrow{BD}$=-t2+3+0=0,解得t=$\sqrt{3}$.
∴$\overrightarrow{A{D}_{1}}$=(0,3,3),$\overrightarrow{AC}$=($\sqrt{3}$,1,0).
设$\overrightarrow{{n}_{1}}$=(x1,y1,z1)是平面ACD1的一个法向量,
则$\left\{\begin{array}{l}{\overrightarrow{AC}•\overrightarrow{{n}_{1}}=0}\\{\overrightarrow{A{D}_{1}}•\overrightarrow{{n}_{1}}=0}\end{array}\right.$ 即$\left\{\begin{array}{l}{\sqrt{3}{x}_{1}+{y}_{1}=0}\\{3{y}_{1}+3{z}_{1}=0}\end{array}\right.$,
令x1=1,则$\overrightarrow{{n}_{1}}$=(1,-$\sqrt{3}$,$\sqrt{3}$).
又$\overrightarrow{C{C}_{1}}$=(0,0,3),$\overrightarrow{CD}$=(-$\sqrt{3}$,2,0).
设$\overrightarrow{{n}_{2}}$=(x2,y2,z2)是平面CDD1C1的一个法向量,
则$\left\{\begin{array}{l}{\overrightarrow{C{C}_{1}}•\overrightarrow{{n}_{2}}=0}\\{\overrightarrow{CD}•\overrightarrow{{n}_{2}}=0}\end{array}\right.$即$\left\{\begin{array}{l}{{z}_{2}=0}\\{-\sqrt{3}{x}_{2}+2{y}_{2}=0}\end{array}\right.$,
令x2=1,则$\overrightarrow{{n}_{2}}$=(1,$\frac{\sqrt{3}}{2}$,0).
∴cos<$\overrightarrow{{n}_{1}}$,$\overrightarrow{{n}_{2}}$>=$\frac{|\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}|}{|\overrightarrow{{n}_{1}}|•|\overrightarrow{{n}_{2}}|}$=$\frac{|1×1+\frac{\sqrt{3}}{2}×(-\sqrt{3})+\sqrt{3}×0|}{\sqrt{1+3+3}×\sqrt{1+\frac{3}{4}+0}}=\frac{1}{7}$,
∴平面ACD1和平面CDD1C1所成角(锐角)的余弦值是$\frac{1}{7}$.

点评 本题考查空间中直线与平面的位置关系、空间向量的应用等基础知识,考查空间想象能力、推理论证能力及运算求解能力,建立坐标系是解决本题的关键,是难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.△ABC的内角A,B,C的对边分别为a,b,c,若$cosA=-\frac{3}{5}$,$sinC=\frac{1}{2}$,c=1,则△ABC的面积为$\frac{8\sqrt{3}-6}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.甲7:00~8:00到,乙7:20~7:50到,先到者等候另一人10分钟,过时离去.则 求两人会面的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=ln(ex-x+a)(e为自然对数的底数)的值域是正实数集R+,则实数a的取值范围是(  )
A.(-∞,-1)B.(0,1]C.(-1,0]D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在?ABCD中,M,N分别为AB,AD上的点,且$\overrightarrow{AM}$=$\frac{3}{4}$$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{2}{3}$$\overrightarrow{AD}$,连接AC,MN交于P点,若$\overrightarrow{AP}$=λ$\overrightarrow{AC}$,则λ的值为(  )
A.$\frac{3}{5}$B.$\frac{3}{7}$C.$\frac{6}{13}$D.$\frac{6}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=x-2是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既是奇函数又是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数 f(x)=log2(1+x)-log2(1-x).
(1)求 f(x)的定义域;
(2)判断 f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=\frac{1}{{\sqrt{4-x}}}$的定义域是(  )
A.(-∞,4)B.(-∞,4]C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过A(0,1)、B(2,-1)两点的面积最小的圆的方程为(  )
A.(x-1)2+y2=2B.(x-1)2+(y+1)2=5C.(x+1)2+(y-1)2=1D.(x+1)2+(y+2)2=10

查看答案和解析>>

同步练习册答案