| A. | (x-1)2+y2=2 | B. | (x-1)2+(y+1)2=5 | C. | (x+1)2+(y-1)2=1 | D. | (x+1)2+(y+2)2=10 |
分析 根据题意可知,以线段AB为直径的圆在过A和B两点的所有圆中面积最小,由A和B的坐标,利用中点坐标公式求出线段AB的中点即为所求圆的圆心,然后利用两点间的距离公式求出线段AB的长,进而得到所求圆的半径,根据求出的圆心坐标和圆的半径写出所求圆的标准方程即可.
解答 解:由题意可知面积最小的圆的圆心坐标为($\frac{0+2}{2}$,$\frac{-1+1}{2}$),即(1,0),
半径r=$\frac{1}{2}$$\sqrt{{(0-2)}^{2}+{[1-(-1)]}^{2}}$=$\sqrt{2}$,
则所求圆的方程为:(x-1)2+y2=2.
故选:A.
点评 此题考查学生灵活运用中点坐标公式及两点间的距离公式化简求值,会根据圆心坐标和半径写出圆的标准方程,是一道基础题.找出以AB为直径的圆即为面积最小的圆是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com