精英家教网 > 高中数学 > 题目详情
7.若函数f(x)在定义域内存在实数x0,使得f(x0+1)≥f(x0)+f(1)成立,则称x0为函数f(x)的“可增点”.
(1)判断函数f(x)=$\frac{1}{x}$是否存在“可增点”?若存在,求出x0的取值范围; 若不存在,说明理由;
(2)若函数f(x)=lg(${\frac{a}{{{x^2}+1}}}$)在(0,+∞)上存在“可增点”,求实数a的取值范围.

分析 (1)假设函数 $f(x)=\frac{1}{x}$有“可增点”,则$\frac{1}{{{x_0}+1}}≥\frac{1}{x_0}+1$,⇒$\frac{{{x}_{0}}^{2}+{x}_{0}+1}{{x}_{0}({x}_{0}+1)}≤0$即x02(x0+1)<0,解出x0即可,
(2)若$f(x)=lg({\frac{a}{{{x^2}+1}}})$ 在(0,+∞)上存在可增点,即有$lg\frac{a}{{{{({{x_0}+1})}^2}+1}}≥lg({\frac{a}{{{x_0}^2+1}}})+lg\frac{a}{2}$成立,即不等式$({a-2}){x_0}^2+2a{x_0}-2+2a≤0$在(0,+∞)上有解,记$g(x)=({a-2}){x_0}^2+2a{x_0}-2+2a$,分a=2,0<a<2,a>2讨论即可.

解答 解:(1)假设函数 $f(x)=\frac{1}{x}$有“可增点”,则$\frac{1}{{{x_0}+1}}≥\frac{1}{x_0}+1$⇒$\frac{{{x}_{0}}^{2}+{x}_{0}+1}{{x}_{0}({x}_{0}+1)}≤0$
即x02(x0+1)<0,∴-1<x0<0,
所以函数$f(x)=\frac{1}{x}$ 存在可增点,∴-1<x0<0.
(2)若$f(x)=lg({\frac{a}{{{x^2}+1}}})$ 在(0,+∞)上存在可增点,即有$lg\frac{a}{{{{({{x_0}+1})}^2}+1}}≥lg({\frac{a}{{{x_0}^2+1}}})+lg\frac{a}{2}$成立,
即$\frac{a}{{{{({{x_0}^2+1})}^2}+1}}≥\frac{a}{{{x_0}^2+1}}•\frac{a}{2}$,且a>0,
依题意不等式$({a-2}){x_0}^2+2a{x_0}-2+2a≤0$在(0,+∞)上有解,
记$g(x)=({a-2}){x_0}^2+2a{x_0}-2+2a$,
当a=2时,${x_0}≤-\frac{1}{2}$,不符合条件;
 当0<a<2时,a-2<0,函数g(x)开口向下,符合条件;
 当a>2时,函数g(x)的对称轴$x=\frac{a}{2-a}<0$,且g(0)=2a-2>0,所以在(0,+∞)上g(x)>0,不符合.
综上可得0<a<2.

点评 本题考查了学生的分析能力及分类讨论的思想应用,同时考查了不等式及对数函数应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如图,在?ABCD中,M,N分别为AB,AD上的点,且$\overrightarrow{AM}$=$\frac{3}{4}$$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{2}{3}$$\overrightarrow{AD}$,连接AC,MN交于P点,若$\overrightarrow{AP}$=λ$\overrightarrow{AC}$,则λ的值为(  )
A.$\frac{3}{5}$B.$\frac{3}{7}$C.$\frac{6}{13}$D.$\frac{6}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知二次函数f(x)的二次项系数为a,且f(x)>-x的解集为{x|1<x<2},方程f(x)+2a=0有两相等实根,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,则f(2016)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若a<0,则$\sqrt{a{x^3}}$=(  )
A.x$\sqrt{ax}$B.x$\sqrt{-ax}$C.-x$\sqrt{-ax}$D.-x$\sqrt{ax}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过A(0,1)、B(2,-1)两点的面积最小的圆的方程为(  )
A.(x-1)2+y2=2B.(x-1)2+(y+1)2=5C.(x+1)2+(y-1)2=1D.(x+1)2+(y+2)2=10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设AB终点为M,CF中点为N.

(1)请将字母F、G、H标记在正方体相应的顶点处(不需说明理由);
(2)证明:直线MN∥面AEF;
(3)若正方体棱长为2,求三棱锥M-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设动点P在y轴与直线l:x=8之间的区域(含边界)上运动,且到点F(2,0)和直线l的距离之和为10,设动点P的轨迹为曲线C,过点S(2,4)作两条直线SA、SB分别交曲线C于A、B两点,斜率分别为k1、k2
(1)求曲线C的方程;
(2)若k1•k2=1,求证:直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知定义在R上的函数$f(x)=\frac{{b-{2^x}}}{{{2^x}+a}}$是奇函数.
(1)求实数a,b的值;
(2)判断f(x)的单调性,并用函数的单调性定义证明你的结论.

查看答案和解析>>

同步练习册答案