精英家教网 > 高中数学 > 题目详情
17.已知定义在R上的函数$f(x)=\frac{{b-{2^x}}}{{{2^x}+a}}$是奇函数.
(1)求实数a,b的值;
(2)判断f(x)的单调性,并用函数的单调性定义证明你的结论.

分析 (1)利用函数是奇函数,通过定义利用待定系数法求解即可.
(2)利用函数的单调性的定义证明求解即可.

解答 解:(1)因为$f(x)=\frac{{b-{2^x}}}{{{2^x}+a}}$定义域为R且是奇函数,故f(-x)=f(x)对于任意x∈R恒成立,
即有$f(-x)+f(x)=\frac{{b-{2^{-x}}}}{{{2^{-x}}+a}}+\frac{{b-{2^x}}}{{{2^x}+a}}$=$\frac{{(b-a)({2^x}+{2^{-x}})+2ab-2}}{{({2^{-x}}+a)({2^x}+a)}}=0$对于任意x∈R恒成立,
于是有$\left\{\begin{array}{l}b-a=0\\ 2ab-2=0\end{array}\right.$解得a=b=1或a=b=-1,
又f(x)的定义域为R,所以a≥0,
故所求实数a,b的值分别为a=1,b=1.
(2)由(1)可得函数f(x)的解析式为$f(x)=\frac{{1-{2^x}}}{{{2^x}+1}}$,f(x)在定义域R上为单调减函数.
用函数的单调性定义证明如下:
在定义域R上任取两个自变量的值x1,x2,且x1<x2
则$f({x_1})-f({x_2})=\frac{{1-{2^{x_1}}}}{{{2^{x_1}}+1}}-\frac{{1-{2^{x_2}}}}{{{2^{x_2}}+1}}=\frac{{2({2^{x_2}}-{2^{x_1}})}}{{({2^{x_1}}+1)({2^{x_2}}+1)}}$,
∵x1<x2,∴${2^{x_2}}-{2^{x_1}}>0$,
又${2^{x_1}}+1>0$,${2^{x_2}}+1>0$,
故有f(x1)-f(x2)>0,即有f(x1)>f(x2),
因此,根据函数单调性的定义可知,函数f(x)在定义域R上为减函数.

点评 本题考查函数的与方程的应用,考查函数的奇偶性以及函数的单调性的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.若函数f(x)在定义域内存在实数x0,使得f(x0+1)≥f(x0)+f(1)成立,则称x0为函数f(x)的“可增点”.
(1)判断函数f(x)=$\frac{1}{x}$是否存在“可增点”?若存在,求出x0的取值范围; 若不存在,说明理由;
(2)若函数f(x)=lg(${\frac{a}{{{x^2}+1}}}$)在(0,+∞)上存在“可增点”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.各项均为正数的等比数列{an}中,a1=81,a5=16,则它的前5项和S5=211.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定积分$\int_0^1{(3{x^2}+{e^x}+1)dx}$的值为e+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若变量x,y满足条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,则目标函数z=2x+y的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$\overrightarrow a=(1,2)$,$\overrightarrow b=(m,1)$,若$\overrightarrow a⊥\overrightarrow b$,则m=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系xOy中,设直线y=-x+2与圆x2+y2=r2(r>0)交于A,B两点,O为坐标原点,若圆上一点C满足$\overrightarrow{OC}$=$\frac{5}{4}$$\overrightarrow{OA}$+$\frac{3}{4}$$\overrightarrow{OB}$,则r=(  )
A.2$\sqrt{2}$B.5C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△ABC中内角A为钝角,则复数(sinA-sinB)+i(sinB-cosC)对应点在(  )
A.第Ⅰ象限B.第Ⅱ象限C.第Ⅲ象限D.第Ⅳ象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.△ABC的顶点A(2,3),B(-4,-2)和重心G(2,-1),则C点坐标为(8,-4).

查看答案和解析>>

同步练习册答案