精英家教网 > 高中数学 > 题目详情
2.若a<0,则$\sqrt{a{x^3}}$=(  )
A.x$\sqrt{ax}$B.x$\sqrt{-ax}$C.-x$\sqrt{-ax}$D.-x$\sqrt{ax}$

分析 由题意可得x≤0,即可求出答案.

解答 解:∵a<0,ax3≥0,
∴x≤0,
∴$\sqrt{a{x^3}}$=|x|$\sqrt{ax}$=-x$\sqrt{ax}$,
故选:D

点评 本题考查了根式的化简,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.点M的直角坐标($\sqrt{3}$,-1)化成极坐标为(  )
A.(2,$\frac{5π}{6}$)B.(2,$\frac{2π}{3}$)C.(2,$\frac{5π}{3}$)D.(2,$\frac{11π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\{2^x},x≤0\end{array}\right.$,则$f[f(\frac{1}{4})]$=(  )
A.4B.$\frac{1}{4}$C.-4D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数y=lg(ax2-2x+2)的值域为R,则实数a的取值范围为(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四个命题:
①“等边三角形的三个内角均为60°”的逆命题;
②“若k>0,则方程x2+2x-k=0有实根”的逆否命题;
③“全等三角形的面积相等”的否命题;
④“若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow a$•$\overrightarrow c$,则$\overrightarrow a$⊥$(\overrightarrow b-\overrightarrow c)$”的否命题,
其中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若函数f(x)在定义域内存在实数x0,使得f(x0+1)≥f(x0)+f(1)成立,则称x0为函数f(x)的“可增点”.
(1)判断函数f(x)=$\frac{1}{x}$是否存在“可增点”?若存在,求出x0的取值范围; 若不存在,说明理由;
(2)若函数f(x)=lg(${\frac{a}{{{x^2}+1}}}$)在(0,+∞)上存在“可增点”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.A为圆O:x2+y2=1上的点,B为直线l:x+y-2=0上的点,则线段AB长度的最小值为(  )
A.$\sqrt{2}$B.2C.$\sqrt{2}$-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,记二次函数f(x)=x2+2x-1(x∈R)与两坐标轴有三个交点,其中与x轴的交点为A,B.经过三个交点的圆记为C.
(1)求圆C的方程;
(2)设P为圆C上一点,若直线PA,PB分别交直线x=2于点M,N,则以MN为直径的圆是否经过线段AB上一定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若变量x,y满足条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,则目标函数z=2x+y的最小值为-3.

查看答案和解析>>

同步练习册答案