| A. | $\frac{1}{2}$ | B. | $\frac{π}{9}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
分析 在平面直角坐标系中作出图形,则x∈[0,2],y∈[0,3]的平面区域为矩形,符合条件x2+y2≤4的区域为以原点为圆心,2为半径的扇形内部,则扇形面积与矩形面积的比为概率
解答 解:在平面直角坐标系中作出图形,如图所示,
则x∈[0,2],y∈[0,3]的平面区域为矩形OABC,![]()
符合条件x2+y2≤4的区域为以原点为圆心,
2为半径的扇形OAD内部,
∴P(x2+y2≤4)=$\frac{{S}_{扇形}}{{S}_{矩形}}$=$\frac{\frac{1}{4}π×{2}^{2}}{2×3}$=$\frac{π}{6}$;
故选D.
点评 本题考查了几何概型的概率计算,正确作出几何图形是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\frac{{4\sqrt{3}}}{3}$ | D. | $-\frac{{4\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1) | B. | (0,1] | C. | (-1,0] | D. | (-1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{3}{7}$ | C. | $\frac{6}{13}$ | D. | $\frac{6}{17}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com