精英家教网 > 高中数学 > 题目详情
2.已知命题p:?x∈R,cosx=$\frac{5}{4}$;命题q:?x∈R,2x+1>0.则下列正确的是(  )
A.p∧q是真命题B.p∧(﹁q)是真命题C.﹁p∧q是真命题D.﹁p∧﹁q是假命题

分析 先判断出p,q的真假,从而判断出复合命题的真假.

解答 解:命题p:?x∈R,cosx=$\frac{5}{4}$,是假命题;
命题q:?x∈R,2x+1>0,是真命题,
故¬p∧q是真命题,
故选:C.

点评 本题考查了复合命题的判断,考查三角函数以及指数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,在△ABC 中,点D在边 AB上,且$\frac{AD}{DB}$=$\frac{1}{3}$.记∠ACD=α,
∠BCD=β.
(Ⅰ)求证:$\frac{AC}{BC}$=$\frac{sinβ}{3sinα}$
(Ⅱ)若α=$\frac{π}{6}$,β=$\frac{π}{2}$,AB=$\sqrt{19}$,求BC 的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数$f(x)=(m-\frac{n}{3})•{3^x}+{x^2}+2nx$,记函数y=f(x)的零点构成的集合为A,函数y=f[f(x)]的零点构成的集合为B,若A=B,则m+n的取值范围为[0,$\frac{8}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)的定义域为R,f(-1)=f(2)=1,其导数f′(x)的图象如图所示,设实数x,y满足$\left\{\begin{array}{l}{xy≥0}\\{f(2x+y)≤1}\end{array}\right.$则表达式z=3x+y的最小值为(  )
A.0B.-1C.-$\frac{3}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.环保组织随机抽检市内某河流2015年内100天的水质,检测单位体积河水中重金属含量x,并根据抽检数据绘制了如下图所示的频率分布直方图.
(Ⅰ)求图中a的值;
(Ⅱ)假设某企业每天由重金属污染造成的经济损失y(单位:元)与单位体积河水中重金属含量x
的关系式为$y=\left\{\begin{array}{l}0,0≤x≤100\\ 4x-400,100<x≤200\\ 5x-600,200<x≤250\end{array}\right.$,若将频率视为概率,在本年内随机抽取一天,试估计这天经济损失不超过500元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,已知椭圆方程为$\frac{{x}^{2}}{2}$+y2=1,F是其左焦点,A、B在椭圆上,满足FA∥OB且|FA|:|OB|=3:2,则点A的横坐标为(  )
A.1B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}<$φ<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{π}{3}$)=(  )
A.$\sqrt{3}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,cosA=-$\frac{5}{13}$,cosB=$\frac{3}{5}$.求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=Asinωx(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(2019)的值为(  )
A.$\sqrt{2}$+1B.2+2$\sqrt{2}$C.2+$\sqrt{2}$D.-2-2$\sqrt{2}$

查看答案和解析>>

同步练习册答案