精英家教网 > 高中数学 > 题目详情
20.若函数f(x)=x3+x2+mx+1在R上既有极大值也有极小值,则实数m的取值范围是(  )
A.($\frac{1}{3}$,+∞)B.(-∞,$\frac{1}{3}$)C.[$\frac{1}{3}$,+∞)D.(-∞,$\frac{1}{3}$]

分析 先求导函数,根据函数在区间(-∞,+∞)内既有极大值,又有极小值,故导函数为0的方程有不等的实数根,可求实数a的取值范围.

解答 解:求导函数:f′(x)=3x2+2x+m,
∵函数f(x)既有极大值又有极小值,
∴△=4-12m>0,∴a<$\frac{1}{3}$,
故选:B.

点评 本题的考点是函数在某点取得极值的条件,主要考查学生利用导数研究函数极值的能力,关键是将问题转化为导函数为0的方程有不等的实数根.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.长方体ABCD-A1B1C1D1中,AB=1,BC=2,AA1=3,点M是BC中点,点P∈AC1,Q∈MD,则|PQ|长度最小值为$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin(x+$\frac{7π}{4}$)+cos(x-$\frac{3π}{4}$),x∈R.
(1)求f(x)的最小正周期和最小值;
(2)已知f(α)=$\frac{6}{5}$,0<α<$\frac{3π}{4}$,求f(2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.关于函数f(x)=log${\;}_{\frac{1}{2}}$(1-2x)的单调性,叙述正确的是(  )
A.f(x)在($\frac{1}{2}$,+∞)内是增函数B.f(x)在($\frac{1}{2}$,+∞)内是减函数
C.f(x)在(-∞,$\frac{1}{2}$)内是增函数D.f(x)在(-∞,$\frac{1}{2}$)内是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=ax3-2ax2+(a+1)x-log2(a2-1)不存在极值点,则实数a的取值范围是(  )
A.(-∞,-1)B.(1,+∞)C.(1,4]D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的前n项和为Sn,a4+a7=20,对任意的k∈N都有Sk+1=3Sk+k2,数列{bn}的前n项和为Tn=2n+1-2.
(I) 求数列{an}的通项公式;
(Ⅱ)求数列a1bn,a2bn-1,…,an-1b2,anb1各项的和Gn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知动圆过定点F(0,1),且与定直线y=-1相切.
(Ⅰ)求动圆圆心M所在曲线C的方程;
(Ⅱ)直线l经过曲线C上的点P(x0,y0),且与曲线C在点P的切线垂直,l与曲线C的另一个交点为Q.
①当x0=$\sqrt{2}$时,求△OPQ的面积;
②当点P在曲线C上移动时,求线段PQ中点N的轨迹方程以及点N到x轴的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=2cos($\frac{x}{2}$-$\frac{π}{3}$)+1
(1)求f(x)的最小正周期;对称轴方程和对称中心的坐标
(2)求f(x)在区间[0,2π]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列角中与-200°角终边相同角(  )
A.200°B.-160°C.160°D.20°

查看答案和解析>>

同步练习册答案