分析 (1)先利用两角和余差的基本公式或诱导公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,结合三角函数的图象和性质f(x)的最小值.
(2)根据f(α)=$\frac{6}{5}$,0<α<$\frac{3π}{4}$,求解α,利用二倍角公式化简f(2α),可得f(2α)的值.
解答 解 (1)∵函数f(x)=sin(x+$\frac{7π}{4}$)+cos(x-$\frac{3π}{4}$),x∈R
化简可得:f9x)=sin(2π-$\frac{π}{4}$+x)+cos($-\frac{π}{2}$-$\frac{π}{4}$+x),
=sin(x-$\frac{π}{4}$)+sin(x-$\frac{π}{4}$)
=2sin(x-$\frac{π}{4}$)
函数的最小正周期T=$\frac{2π}{ω}=\frac{2π}{1}$=2π,
∵sin(x-$\frac{π}{4}$)的最小值为-1,
∴f(x)的最小值为-2.
(2)由及(1)知f(x)=2sin(x-$\frac{π}{4}$)
f(α)=$\frac{6}{5}$,
∴$sin(α-\frac{π}{4})=\frac{3}{5}$,
由$0<α<\frac{3π}{4}$,知$-\frac{π}{4}<α-\frac{π}{4}<\frac{π}{2}$,
∴$cos(α-\frac{π}{4})=\frac{3}{5}$
∴$f(2α)=2sin(2α-\frac{π}{4})=2sin[2(α-\frac{π}{4})+\frac{π}{4}]$=$\sqrt{2}[sin2(α-\frac{π}{4})+cos2(α-\frac{π}{4})]$=$\sqrt{2}[2sin(α-\frac{π}{4})cos(α-\frac{π}{4})+2{cos^2}(α-\frac{π}{4})-1]$=$\sqrt{2}(2×\frac{3}{5}×\frac{4}{5}+2×\frac{16}{25}-1)=\frac{{31\sqrt{2}}}{25}$.
点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.同时考察了二倍角公式的化简和计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{3}{2}$,$\frac{3}{4}$) | B. | [$\frac{1}{2}$,3) | C. | (-$\frac{3}{2}$,3) | D. | [$\frac{1}{2}$,$\frac{3}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{14}$ | B. | $\sqrt{15}$ | C. | 4 | D. | $\sqrt{17}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{3}$,+∞) | B. | (-∞,$\frac{1}{3}$) | C. | [$\frac{1}{3}$,+∞) | D. | (-∞,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com