精英家教网 > 高中数学 > 题目详情
1.在公差不为0的等差数列{an}中,a2、a4、a8成公比为a2的等比数列,又数列{bn}满足bn=$\left\{\begin{array}{l}{{2}^{{a}_{n}},n=2k-1,k∈N*}\\{2{a}_{n},n=2k,k∈N*}\end{array}\right.$.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和为Tn
(3)令cn=$\frac{{b}_{2n-1}}{{b}_{2n}}$(n∈N*),求使得cn>10成立的n的取值范围.

分析 (1)设数列{an}公差为d,由题设得:${a}_{4}^{2}={a}_{2}{a}_{8}$,${a}_{4}={a}_{2}^{2}$,$({a}_{1}+3d)^{2}=({a}_{1}+d)({a}_{1}+7d)$,a1+3d=$({a}_{1}+d)^{2}$,解出即可得出.
(2)由(1)知:bn=$\left\{\begin{array}{l}{{2}^{n},n=2k-1}\\{2n,n=2k}\end{array}\right.$,k∈N*.对n分类讨论,利用等差数列与等比数列的求和公式即可得出.
(3)由(2)知,cn=$\frac{{b}_{2n-1}}{{b}_{2n}}$=$\frac{{2}^{2n-1}}{4n}$,可得$\frac{{c}_{n+1}}{{c}_{n}}$=$\frac{4n}{n+1}$>1,利用其单调性即可得出.

解答 解:(1)设数列{an}公差为d,由题设得:${a}_{4}^{2}={a}_{2}{a}_{8}$,${a}_{4}={a}_{2}^{2}$,
即$({a}_{1}+3d)^{2}=({a}_{1}+d)({a}_{1}+7d)$,a1+3d=$({a}_{1}+d)^{2}$,
  解得a1=d=1.
∴数列{an}的通项公式为:an=1+(n-1)=n.
(2)由(1)知:bn=$\left\{\begin{array}{l}{{2}^{n},n=2k-1}\\{2n,n=2k}\end{array}\right.$,k∈N*
①当n为偶数,即n=2k时,奇数项和偶数项各$\frac{n}{2}$项,
∴Tn=(4+8+…+2n)+(2+23+…+2n-1
=$\frac{\frac{n}{2}(4+2n)}{2}$+$\frac{2({4}^{\frac{n}{2}}-1)}{4-1}$=$\frac{1}{3}•{2}^{n+1}$+$\frac{1}{2}{n}^{2}$+n-$\frac{2}{3}$.
②当n为奇数,即n=2k-1时,n+1为偶数.
∴Tn=Tn+1-an+1=$\frac{1}{3}×{2}^{n+2}$+$(\frac{n+1}{2})^{2}$+(n+1)-$\frac{2}{3}$-2(n+1)=$\frac{1}{3}×{2}^{n+2}$+$\frac{{n}^{2}}{2}$-$\frac{7}{6}$.
综上:Tn=$\left\{\begin{array}{l}{\frac{1}{3}•{2}^{n+1}+\frac{{n}^{2}}{2}+n-\frac{2}{3},n=2k}\\{\frac{1}{3}×{2}^{n+2}+\frac{1}{2}{n}^{2}-\frac{7}{6},n=2k-1}\end{array}\right.$,k∈N*
(3)由(2)知,cn=$\frac{{b}_{2n-1}}{{b}_{2n}}$=$\frac{{2}^{2n-1}}{4n}$,
∵$\frac{{c}_{n+1}}{{c}_{n}}$=$\frac{\frac{{2}^{2(n+1)-1}}{4(n+1)}}{\frac{{2}^{2n-1}}{4n}}$=$\frac{4n}{n+1}$>1,
∴数列{cn}是递增数列.
∵c4=8,c5=$\frac{128}{5}$>10,
∴使得cn>10成立的n的取值范围为n≥5,n∈N*

点评 本题考查了等差数列与等比数列的通项公式与求和公式、数列的单调性,考查了分类讨论方法、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin(x+$\frac{7π}{4}$)+cos(x-$\frac{3π}{4}$),x∈R.
(1)求f(x)的最小正周期和最小值;
(2)已知f(α)=$\frac{6}{5}$,0<α<$\frac{3π}{4}$,求f(2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知动圆过定点F(0,1),且与定直线y=-1相切.
(Ⅰ)求动圆圆心M所在曲线C的方程;
(Ⅱ)直线l经过曲线C上的点P(x0,y0),且与曲线C在点P的切线垂直,l与曲线C的另一个交点为Q.
①当x0=$\sqrt{2}$时,求△OPQ的面积;
②当点P在曲线C上移动时,求线段PQ中点N的轨迹方程以及点N到x轴的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=2cos($\frac{x}{2}$-$\frac{π}{3}$)+1
(1)求f(x)的最小正周期;对称轴方程和对称中心的坐标
(2)求f(x)在区间[0,2π]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A,B的极坐标分别为(4,$\frac{2π}{3}$),(2,$\frac{π}{3}$)则直线AB的极坐标方程为ρsin(θ+$\frac{π}{6}$)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某校为了研究学生的性别和对待某一活动的态度(支持和不支持)的关系,运用2×2列联表进行独立性检验,经计算K2=8.076,则有多大的把握认为“学生性别与支持该活动有关系”(  )
附:
P(k2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
A.0.1%B.1%C.99%D.99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.对于平面α,直线m,n给出下列命题
①若m∥n,则m,n与α所成的角相等.
②若m∥n,n∥α,则m∥α.
③若m⊥α,m⊥n,则n⊥α
④若m与n异面且m∥α,则n与α相交,
其中正确命题个数有(  )个.
A.4B.2C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列角中与-200°角终边相同角(  )
A.200°B.-160°C.160°D.20°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C的中心在坐标原点,焦点在x轴上,离心率e=$\frac{1}{2}$,且椭圆C经过点P(2,3),过椭圆C的左焦点F1且不与坐标轴垂直的直线交椭圆C于A,B两点.
(1)求椭圆C的方程;
(2)设线段AB的垂直平分线与x轴交于点G,求△PF1G的面积S的取值范围.

查看答案和解析>>

同步练习册答案