精英家教网 > 高中数学 > 题目详情
19.将函数y=2sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{2}$个单位,所得图象对应的函数(  )
A.在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递增B.在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递减
C.在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递增D.在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递减

分析 利用函数y=Asin(ωx+φ)的图象变换规律求得所得图象对应的解析式,再利用正弦函数的单调性,求得所得图象对应的函数的单调区间,即可得解.

解答 解:将函数y=2sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{2}$个单位长度,
得到y=2sin[2(x-$\frac{π}{2}$)+$\frac{π}{3}$]=2sin(2x-$\frac{2π}{3}$)的图象,
令2kπ-$\frac{π}{2}$≤2x-$\frac{2π}{3}$≤2kπ+$\frac{π}{2}$,得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,k∈Z,
可得函数的单调递增区间为:[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z,
当k=0时,单调递增区间为:[$\frac{π}{12}$,$\frac{7π}{12}$],故A正确.
故选:A.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1,F2,P为双曲线C上的一点,若$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|=\sqrt{{{|{\overrightarrow{P{F_1}}}|}^2}+{{|{\overrightarrow{P{F_2}}}|}^2}}$,$|{\overrightarrow{P{F_1}}}|=2|{\overrightarrow{P{F_2}}}|$,则双曲线C的离心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a,b,c分别为△ABC中角A,B,C的对边,函数$f(x)=3+2\sqrt{3}sinxcosx+2{cos^2}x$且f(A)=5.
(1)求角A的大小;
(2)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数g(x)=|x|+2|x+2-a|(a∈R).
(1)当a=3时,解不等式g(x)≤4;
(2)令f(x)=g(x-2),若f(x)≥1在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.2017年1月1日,作为贵阳市打造“千园之城”27个示范性公元之一的泉湖公园正式开园,元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放,现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:
(1)根据条件完成下列2×2列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?
  愿意 不愿意 总计
 男生   
 女生   
 总计   
(2)现用分层抽样的方法从愿意接受挑战的市民中选取7名挑战者,再从中抽取2人参加挑战,求抽取的2人中至少有一名男生的概率.
参考公式与数据:
 P(K2≥k0 0.1 0.05 0.025 0.01
 k0 2.7063.841 5.024 6.635 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点P(-1,$\frac{3}{2}$)是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点,F1,F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(1)求椭圆E的方程;
(2)设A,B是椭圆E上两个动点,满足:$\overrightarrow{PA}$+$\overrightarrow{PB}$=λ$\overrightarrow{PO}$(0<λ<4,且λ≠2),求直线AB的斜率.
(3)在(2)的条件下,当△PAB面积取得最大值时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将一根长为3米的绳子在任意位置剪断,则剪得两段的长度都不小于1米的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.点P在双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右支上,其左右焦点分别为F1,F2,直线PF1与以坐标原点O为圆心a为半径的圆相切于点A,线段PF1的垂直平分线恰好过点F2,则$\frac{{S}_{△O{F}_{2}A}}{{S}_{△P{F}_{1}{F}_{2}}}$的值为(  )
A.$\frac{1}{7}$B.$\frac{2}{9}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.△ABC的内角A,B,C所对的边分别是a,b,c,向量$\overrightarrow m=({b,-\sqrt{3}a})$与$\overrightarrow n=({cosA,sinB})$垂直.
(1)求A;
(2)若B+$\frac{π}{12}$=A,a=2,求△ABC的面积.

查看答案和解析>>

同步练习册答案