精英家教网 > 高中数学 > 题目详情
7.已知函数g(x)=|x|+2|x+2-a|(a∈R).
(1)当a=3时,解不等式g(x)≤4;
(2)令f(x)=g(x-2),若f(x)≥1在R上恒成立,求实数a的取值范围.

分析 (1)由题意可得g(x)=|x|+2|x-1|≤4,讨论当x≥1时,当0≤x<1时,当x<0时,去掉绝对值,解不等式即可得到所求解集;
(2)求得f(x)=g(x-2)=|x-2|+2|x-a|(a∈R),讨论a=2,a>2,a<2,运用分段函数求出f(x),所以f(x)的最小值为f(2)或f(a),由恒成立思想可得a的不等式,解不等式即可得到所求范围.

解答 解:(1)依题意得g(x)=|x|+2|x-1|≤4
当x≥1时,原不等式化为:x+2(x-1)≤4,解得1≤x≤2;
当0≤x<1时,原不等式化为:x+2(1-x)≤4,解得0≤x<1
当x<0时,原不等式化为:-x+2(1-x)≤4,
解得-$\frac{2}{3}$≤x<0.
综上可得,不等式的解集为{x|-$\frac{2}{3}$≤x≤2};  …(4分)
(2)f(x)=g(x-2)=|x-2|+2|x-a|(a∈R)
a>2时,f(x)=$\left\{\begin{array}{l}{-3x+2+2a,x≤2}\\{-x+2a-2,2<x<a}\\{3x-2-2a,x≥a}\end{array}\right.$;
a=2时,f(x)=$\left\{\begin{array}{l}{-3x+6,x≤2}\\{3x-6,x>2}\end{array}\right.$;
a<2时,f(x)=$\left\{\begin{array}{l}{-3x+2+2a,x≤a}\\{x-2a+2,a<x<2}\\{3x-2-2a,x≥2}\end{array}\right.$;
所以f(x)的最小值为f(2)或f(a);
则$\left\{\begin{array}{l}{f(a)≥1}\\{f(2)≥1}\end{array}\right.$,即$\left\{\begin{array}{l}{|a-2|≥1}\\{2|a-2|≥1}\end{array}\right.$所以|a-2|≥1,
解得a≤1或a≥3.…(10分)

点评 本题考查绝对值不等式的解法,注意运用零点分区间方法去绝对值,考查不等式恒成立问题的解法,注意运用分类讨论思想方法,以及转化为求最小值,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.双曲线mx2-y2=1(m∈R)与椭圆$\frac{x^2}{5}+{y^2}=1$有相同的焦点,则该双曲线的渐近线方程为(  )
A.$y=±\sqrt{3}x$B.$y=±\frac{{\sqrt{3}}}{3}x$C.$y=±\frac{1}{3}x$D.y=±3x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a>b>0,c<d<0,则一定有(  )
A.ad>bcB.ad<bcC.ac>bdD.ac<bd

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$cos(\frac{π}{2}-α)=\frac{{\sqrt{2}}}{3}$,则cos(π-2α)=(  )
A.$\frac{2}{9}$B.$\frac{5}{9}$C.$-\frac{2}{9}$D.$-\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,a,b,c分别是角A,B,C的对边,C=2A,cosA=$\frac{3}{4}$,$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{27}{2}$,则b=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.经过双曲线的左焦点F1作倾斜角为30°的直线,与双曲线的右支交于点P,若以PF1为直径的圆恰好经过双曲线的右焦点,则双曲线的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数y=2sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{2}$个单位,所得图象对应的函数(  )
A.在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递增B.在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递减
C.在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递增D.在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB=2,点E是PB的中点,点F在边BC上移动.
(Ⅰ)若F为BC中点,求证:EF∥平面PAC;
(Ⅱ)求证:AE⊥PF;
(Ⅲ)若二面角E-AF-B的余弦值等于$\frac{\sqrt{11}}{11}$,求$\frac{BF}{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义:椭圆上一点与两焦点构成的三角形为椭圆的焦点三角形,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为4$\sqrt{5}$,焦点三角形的周长为4$\sqrt{5}$+12,则椭圆C的方程是$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{16}=1$.

查看答案和解析>>

同步练习册答案