精英家教网 > 高中数学 > 题目详情
2.在△ABC中,a,b,c分别是角A,B,C的对边,C=2A,cosA=$\frac{3}{4}$,$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{27}{2}$,则b=5.

分析 由C=2A,得到cosC=cos2A,cos2A利用二倍角的余弦函数公式化简,将cosA的值代入求出cosC的值,发现cosC的值大于0,由A和B为三角形的内角,得到A和B都为锐角,进而利用同角三角函数间的基本关系求出sinA和sinC的值,最后利用三角形的内角和定理及诱导公式化简cosB,再利用两角和与差的余弦函数公式化简,将各自的值代入即可求出cosB的值;利用平面向量的数量积运算法则化简已知的等式$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{27}{2}$,由cosB的值,求出ac的值,由a,c,sinA和sinC,利用正弦定理列出关系式,将C=2A代入并利用二倍角的正弦函数公式化简,用c表示出a,代入ac=24中,求出c的值,进而得到a的值,最后由a,c及cosB的值,利用余弦定理即可求出b的值.

解答 解:∵C=2A,cosA=$\frac{3}{4}$>0,
∴cosC=cos2A=2cos2A-1=2×($\frac{3}{4}$)2-1=$\frac{1}{8}$>0,
∵0<A<π,0<C<π,
∴0<A<$\frac{π}{2}$,0<C<$\frac{π}{2}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{7}}{4}$,sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{3\sqrt{7}}{8}$,
∴cosB=cos[π-(A+C)]=-cos(A+C)=-(cosAcosC-sinAsinC)=$\frac{9}{16}$;
∵$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{27}{2}$,
∴accosB=$\frac{27}{2}$,
∴ac=24,
∵$\frac{a}{sinA}$=$\frac{c}{sinC}$=$\frac{c}{sin2A}$=$\frac{c}{2sinAcosA}$,
∴a=$\frac{c}{2cosA}$=$\frac{2}{3}$c,
由$\left\{\begin{array}{l}{a=\frac{2}{3}c}\\{ac=24}\end{array}\right.$解得$\left\{\begin{array}{l}{a=4}\\{c=6}\end{array}\right.$,
∴b2=a2+c2-2accosB=42+62-2×24×$\frac{9}{16}$=25,
∴b=5.
故答案为:5.

点评 此题考查了正弦、余弦定理,二倍角的正弦、余弦函数公式,同角三角函数间的基本关系,诱导公式,两角和与差的正弦函数公式,以及平面向量的数量积运算法则,熟练掌握定理及公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知$tan({α-β})=\frac{{\sqrt{2}}}{2},tanβ=-\frac{{\sqrt{2}}}{2}$,则tan(α-2β)=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知命题:
①α>β的充分不必要条件是sinα>sinβ
②若a,b∈R,ab<0,则$\frac{b}{a}+\frac{a}{b}≤-2$
③命题“若x+y≠5,则x≠2或y≠3”的否命题为假命题
④若a≠b,则a3+b3>a2b+ab2
其中真命题的序号是②③.(请把所有真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a,b,c分别为△ABC中角A,B,C的对边,函数$f(x)=3+2\sqrt{3}sinxcosx+2{cos^2}x$且f(A)=5.
(1)求角A的大小;
(2)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知O为坐标原点,F是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点,A,B分别为双曲线C的左、右顶点,P为双曲线C上的一点,且PF⊥x轴,过点A的直线l与线段PF交于M,与y轴交于点E,直线BM与y轴交于点N,若|OE|=3|ON|,则双曲线C的离心率为(  )
A.$\frac{4}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数g(x)=|x|+2|x+2-a|(a∈R).
(1)当a=3时,解不等式g(x)≤4;
(2)令f(x)=g(x-2),若f(x)≥1在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.2017年1月1日,作为贵阳市打造“千园之城”27个示范性公元之一的泉湖公园正式开园,元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放,现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:
(1)根据条件完成下列2×2列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?
  愿意 不愿意 总计
 男生   
 女生   
 总计   
(2)现用分层抽样的方法从愿意接受挑战的市民中选取7名挑战者,再从中抽取2人参加挑战,求抽取的2人中至少有一名男生的概率.
参考公式与数据:
 P(K2≥k0 0.1 0.05 0.025 0.01
 k0 2.7063.841 5.024 6.635 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将一根长为3米的绳子在任意位置剪断,则剪得两段的长度都不小于1米的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列结论不正确的是(  )
A.若ab>bc,则a>cB.若a3>b3,则a>b
C.若a>b,c<0,则ac<bcD.若$\sqrt{a}$<$\sqrt{b}$,则a>b

查看答案和解析>>

同步练习册答案