精英家教网 > 高中数学 > 题目详情
11.将一根长为3米的绳子在任意位置剪断,则剪得两段的长度都不小于1米的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{4}$

分析 根据题意确定为几何概型中的长度类型,将长度为3m的绳子分成相等的三段,在中间一段任意位置剪断符合要求,从而找出中间1m处的两个界点,再求出其比值.

解答 解:记“两段的长都不小于1m”为事件A,
则只能在中间1m的绳子上剪断,才使得剪得两段的长都不小于1m,
所以由几何概型的公式得到事件A发生的概率 P(A)=$\frac{1}{3}$.
故选:A.

点评 本题主要考查概率中的几何概型,关键是明确概率模型,明确事件的测度,通过长度、面积或体积之比来得到概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{1}{1+{x}^{2}}$的值域是(  )
A.{y|y≠0}B.(0,1]C.(0,1)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,a,b,c分别是角A,B,C的对边,C=2A,cosA=$\frac{3}{4}$,$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{27}{2}$,则b=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数y=2sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{2}$个单位,所得图象对应的函数(  )
A.在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递增B.在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递减
C.在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递增D.在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sin2ωx-$\frac{1}{2}$(ω>0)的周期为$\frac{π}{2}$,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB=2,点E是PB的中点,点F在边BC上移动.
(Ⅰ)若F为BC中点,求证:EF∥平面PAC;
(Ⅱ)求证:AE⊥PF;
(Ⅲ)若二面角E-AF-B的余弦值等于$\frac{\sqrt{11}}{11}$,求$\frac{BF}{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}和{bn}中,a1=$\frac{1}{2}$,{an}的前n项为Sn,满足Sn+1+($\frac{1}{2}$)n+1=Sn+($\frac{1}{2}$)n(n∈N*),bn=(2n+1)an,{bn}的前n项和为Tn
(1)求数列{bn}的通项公式bn以及Tn
(2)若T1+T3,mT2,3(T2+T3)成等差数列,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\frac{2-x}{x+b}$,f(x)的图象与其反函数的图象重合.
(1)求f(x)的解析式;
(2)关于x的方程ax=f(x)(a>1)是否存在负实数解?写出你的判断并给出相应证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$\overrightarrow{a}$,$\overrightarrow{b}$均是非零向量,则使得|$\overrightarrow{a}$|-|$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|成立的一个充分不必要条件是(  )
A.$\overrightarrow{a}$⊥$\overrightarrow{b}$B.$\overrightarrow{a}$∥$\overrightarrow{b}$C.$\overrightarrow{a}$=-2$\overrightarrow{b}$D.$\overrightarrow{a}$=2$\overrightarrow{b}$

查看答案和解析>>

同步练习册答案