精英家教网 > 高中数学 > 题目详情
18.若a>b>0,c<d<0,则一定有(  )
A.ad>bcB.ad<bcC.ac>bdD.ac<bd

分析 利用不等式的基本性质即可得出.

解答 解:∵c<d<0,∴-c>-d>0.
又a>b>0,
则一定有-ac>-bd,可得ac<bd.
故选:D.

点评 本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=$\frac{1}{(x+1)ln(x+1)}$(x>-1且x≠0)
(1)求函数f(x)的单调区间;
(2)求函数f(x)值域
(3)已知2${\;}^{\frac{1}{x+1}}$>(x+1)m对任意x∈(-1,0)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1,F2,P为双曲线C上的一点,若$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|=\sqrt{{{|{\overrightarrow{P{F_1}}}|}^2}+{{|{\overrightarrow{P{F_2}}}|}^2}}$,$|{\overrightarrow{P{F_1}}}|=2|{\overrightarrow{P{F_2}}}|$,则双曲线C的离心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在区间[2,10]上任取一个数,这个数在区间[5,7]上的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知命题:
①α>β的充分不必要条件是sinα>sinβ
②若a,b∈R,ab<0,则$\frac{b}{a}+\frac{a}{b}≤-2$
③命题“若x+y≠5,则x≠2或y≠3”的否命题为假命题
④若a≠b,则a3+b3>a2b+ab2
其中真命题的序号是②③.(请把所有真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P是DD1的中点.
求证:(1)直线BD1∥平面PAC
(2)①求异面直线PC与AA1所成的角.
②平面PAC⊥平面BDD1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a,b,c分别为△ABC中角A,B,C的对边,函数$f(x)=3+2\sqrt{3}sinxcosx+2{cos^2}x$且f(A)=5.
(1)求角A的大小;
(2)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数g(x)=|x|+2|x+2-a|(a∈R).
(1)当a=3时,解不等式g(x)≤4;
(2)令f(x)=g(x-2),若f(x)≥1在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.点P在双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右支上,其左右焦点分别为F1,F2,直线PF1与以坐标原点O为圆心a为半径的圆相切于点A,线段PF1的垂直平分线恰好过点F2,则$\frac{{S}_{△O{F}_{2}A}}{{S}_{△P{F}_{1}{F}_{2}}}$的值为(  )
A.$\frac{1}{7}$B.$\frac{2}{9}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

同步练习册答案