分析 (1)连接BD,交AC于O,连接PO,由三角形的中位线定理和线面平行的判定定理,即可得证;
(2)①连接PC1,AA1∥CC1,∠C1CP即为异面直线PC与AA1所成的角,分别求出△C1CP的三边,由解三角形即可得到所求角;
②运用正方形的对角线垂直和线面垂直的性质定理,可得AC⊥平面BDD1B1,再由面面垂直的判定定理,即可得证.
解答
(1)证明:连接BD,交AC于O,连接PO,
在△BDD1中,OP为中位线,
可得OP∥BD1,
又OP?平面PAC,BD1?平面PAC,
则直线BD1∥平面PAC;
(2)①连接PC1,AA1∥CC1,
∠C1CP即为异面直线PC与AA1所成的角,
在△C1CP中,C1C=2,PC=$\sqrt{C{D}^{2}+P{D}^{2}}$=$\sqrt{1+1}$=$\sqrt{2}$,
PC1=$\sqrt{{C}_{1}{{D}_{1}}^{2}+P{{D}_{1}}^{2}}$=$\sqrt{1+1}$=$\sqrt{2}$,
由PC2+PC12=CC12,可得△C1CP为等腰直角三角形,
则异面直线PC与AA1所成的角为45°;
②证明:在底面ABCD中,AB=AD,
即有四边形ABCD为正方形,
可得AC⊥BD,
D1D⊥平面ABCD,AC?平面ABCD,
即有D1D⊥AC,
D1D∩BD=D,
可得AC⊥平面BDD1B1,
AC?平面PAC,
则平面PAC⊥平面BDD1.
点评 本题考查线面平行的判定,注意运用中位线定理和线面平行的判定定理,考查异面直线所成角的求法,注意运用平移法,考查面面垂直的判定,注意运用线面垂直的判定和性质,考查空间想象能力和推理能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 2π | B. | π | C. | $\frac{π}{2}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{9}$ | B. | $\frac{5}{9}$ | C. | $-\frac{2}{9}$ | D. | $-\frac{5}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| | 1 | 2 | 3 | 4 | 5 |
| 物理成绩 | 90 | 85 | 74 | 68 | 63 |
| 数学成绩 | 130 | 125 | 110 | 95 | 90 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com