精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=sin2x+$\frac{1}{2}$的最小正周期是(  )
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

分析 利用降幂公式化简函数的解析式,再利用函数y=Asin(ωx+φ)的周期性,得出结论.

解答 解:函数f(x)=sin2x+$\frac{1}{2}$=$\frac{1-cos2x}{2}$+$\frac{1}{2}$=1-$\frac{1}{2}$cos2x 的最小正周期是$\frac{2π}{2}$=π,
故选:B.

点评 本题主要考查降幂公式,函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为$\frac{2π}{ω}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=x2+ax+b2,若a是从区间[0,3]内任取的一个数,b是从区间[0,2]内任取的一个数,则f(x)的图象全在x轴上方的概率是(  )
A.$\frac{3}{8}$B.$\frac{5}{8}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过抛物线y2=2px(p>0)的焦点F作直线交抛物线于A,B,若S△OAF=4S△OBF,则直线AB的斜率为(  )
A.±$\frac{3}{5}$B.±$\frac{4}{5}$C.±$\frac{3}{4}$D.±$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,a,b,c分别是三内角A,B,C对应的三边,已知b2+c2=a2+bc.
(1)求角A的大小;
(2)若2sin2$\frac{B}{2}$=cosC,判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=$\frac{1}{(x+1)ln(x+1)}$(x>-1且x≠0)
(1)求函数f(x)的单调区间;
(2)求函数f(x)值域
(3)已知2${\;}^{\frac{1}{x+1}}$>(x+1)m对任意x∈(-1,0)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=1+a($\frac{1}{2}$)x+($\frac{1}{4}$)x
(1)当a=1时,解不等式f(x)>7;
(2)若对任意x∈[0,+∞),总有f(x)≤3成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.以下四个命题中,其中真命题的个数为(  )
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②对于命题p:?x∈R,使得x2+x+1<0.则¬p:?x∈R,均匀x2+x+1≥0
③“x<0”是“ln(x+1)<0”的充分不必要条件;
④“若x+y=0,则x,y互为相反数”的逆命题.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若0<a<2,0<b<2,则函数$f(x)=\frac{1}{3}{x^3}+\sqrt{a}{x^2}+2bx-3$存在极值的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P是DD1的中点.
求证:(1)直线BD1∥平面PAC
(2)①求异面直线PC与AA1所成的角.
②平面PAC⊥平面BDD1

查看答案和解析>>

同步练习册答案