精英家教网 > 高中数学 > 题目详情
已知△ABC中,AB=AC=5,BC=6,则△ABC的面积为(  )
A、12B、15C、20D、25
考点:三角形的面积公式
专题:解三角形
分析:利用等腰三角形的性质、三角形的面积公式即可得出.
解答: 解:取BC的中点D,∵AB=AC,∴AD⊥BC,
AD=
AB2-BD2
=4.
∴△ABC的面积S=
1
2
BC•AD
=
1
2
×6×4
=12.
故选:A.
点评:本题考查了等腰三角形的性质、三角形的面积公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC中,若cosC=2sinAsinB-1则△ABC的形状一定是(  )
A、直角三角形
B、等边三角形
C、等腰直角三角形
D、等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

点P是双曲线
x2
4
-
y2
12
=1上的一点,F1和F2分别是双曲线的左、右焦点,
PF1
PF2
=0,则△F1PF2的面积是(  )
A、24B、16C、8D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”是“x∈M∩N”的(  )条件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+1,关于这个函数给出以下四个命题
①函数f(x)是奇函数;
②x=0是函数f(x)的极值点;
③y=1是曲线y=f(x)的一条切线;
④存在a,b∈R,使得x∈[a,b]时,f(x)∈[a+1,b+1]
其中真命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

化简下列各式.
(1)
cos(1800+α)sin(α+3600)
sin(-α-1800)cos(-1800-α)

(2)
sin(2π-α)cos(π+α)cos(
π
2
+α)cos(
11
2
π-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
2
+α)

查看答案和解析>>

科目:高中数学 来源: 题型:

从4名女同学和6名男同学中,选出3名女同学和4名男同学,7人排成一排.
(1)如果选出的7人中,3名女同学必须站在一起,共有多少种排法?
(2)如果选出的7人中,3名女同学互不相邻,共有多少种排法?
(注:必须用数字表示最终结果)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在(-∞,0)∪(0,+∞)上有意义,且在(0,+∞)上是增函数,f(1)=0
(1)求满足不等式f(x)<0的实数x的取值范围;
(2)设函数g(θ)=sin2θ+m•cosθ-2m,若集合M={m|g(θ)<0},集合 N={m|f[g(θ)]<0},求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:

7个排成一排,在下列情况下,各有多少种不同排法?
(1)甲排头;
(2)甲不排头,也不排尾;
(3)甲、乙、丙三人必须在一起;
(4)甲、乙、丙三人互不相邻.

查看答案和解析>>

同步练习册答案