精英家教网 > 高中数学 > 题目详情
(2011•东城区模拟)已知向量
a
=(x2,x+1),
b
=(1-x,t),若函数f(x)=
a
b
在区间(-1,1)上是增函数,则实数t的取值范围是(  )
分析:本题可以先用数量积的运算计算出f(x),在对f(x)丢导数判断函数的单调性转化为f'(x)在区间(-1,1)上恒成立,进而解决.
解答:解:依定义f(x)=x2(1-x)+t(x+1)=-x3+x2+tx+t,
则f′(x)=-3x2+2x+t.
若f(x)在(-1,1)上是增函数,
则在(-1,1)上f'(x)≥0恒成立.
∴f′(x)≥0?t≥3x2-2x,
在区间(-1,1)上恒成立,
考虑函数g(x)=3x2-2x,
由于g(x)的图象是对称轴为x=
1
3
,开口向上的抛物线,
故要使t≥3x2-2x在区间(-1,1)上恒成立?t≥g(-1),
即t≥5.
而当t≥5时,f′(x)在(-1,1)上满足f′(x)>0,
即f(x)在(-1,1)上是增函数;
故t的取值范围是t≥5.
故选A.
点评:导数是判断函数的单调性或者解决单调性的逆向问题很好的工具,另外注意分离参数来求参数的范围是解决这类题型比较常用的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•东城区二模)给出下列三个命题:
①?x∈R,x2>0;
②?x0∈R,使得x02≤x0成立;
③对于集合M,N,若x∈M∩N,则x∈M且x∈N.
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区二模)已知正项数列{an}中,a1=1,a2=2,2an2=an+12+an-12(n≥2),则a6等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区二模)已知双曲线
x2
a2
-
y2
b2
=1 (a>0,b>0)
,过其右焦点且垂直于实轴的直线与双曲线交于M,N两点,O为坐标原点.若OM⊥ON,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区二模)某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成调查小组,有关数据见下表,则调查小组的总人数为
9
9
;若从调查小组中的公务员和教师中随机选2人撰写调查报告,则其中恰好有1人来自公务员的概率为
3
5
3
5

相关人员数 抽取人数
公务员 32 x
教师 48 y
自由职业者 64 4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区二模)已知点P(2,t)在不等式组
x-y-4≤0
x+y-3≤0
表示的平面区域内,则点P(2,t)到直线3x+4y+10=0距离的最大值为
4
4

查看答案和解析>>

同步练习册答案