精英家教网 > 高中数学 > 题目详情
1.已知a为如图所示的程序框图输出的结果,则二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式中常数项是(  )
A.20B.$-\frac{5}{2}$C.-192D.-160

分析 模拟程序框图的运行过程,求出输出a的值,再求二项式的展开式中常数项的值.

解答 解:由框图可知:
$\begin{array}{l}a=2,i=1\\ a=-1,i=2\\ a=\frac{1}{2},i=3\\ a=2,i=4\\ a=-1,i=5\\…\\ a=2,i=2017\end{array}$
跳出循环,故a=2,
∴二项式(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式中的通项是
Tr+1=${C}_{6}^{r}$•(2$\sqrt{x}$)6-r•(-$\frac{1}{\sqrt{x}}$)r=(-1)r•${C}_{6}^{r}$•26-r•x3-r
令3-r=0,得r=3;
∴常数项是T4=(-1)3•${C}_{6}^{3}$•23=$-C_6^3{2^3}=-160$.
故选:D.

点评 本题考查了出现框图的应用以及二项式定理的应用问题,解题时应模拟程序框图的运行过程,并利用二项式的通项公式进行计算,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=xex在x=x0处的导数值与函数值互为相反数,则x0的值等于(  )
A.0B.-1C.$-\frac{1}{2}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递减,若f(log2a)+f(3${log}_{\frac{1}{8}}$a)≥2f(-1),则实数a的取值范围是(  )
A.[2,4]B.[$\frac{1}{4}$,2]C.[$\frac{\sqrt{2}}{2}$,4]D.[$\frac{1}{2}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知:f(x)=x2+bx+c,不等式f(x)<0的解集是(0,4).
(1)求f(x)的解析式;
(2)若对于任意的x∈[-1,3],则不等式f(x)-t≤2恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若集合A={1,2,3,4},B={1,2,3},则从集合A到集合B的不同映射的个数是(  )
A.12B.24C.64D.81

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.点P(3,2)关于直线y=x+1的对称点P′的坐标为(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知平面直角坐标系内一点A(3,2).
(1)求经过点A(3,2),且与直线x+y-2=0平行的直线的方程;
(2)求经过点A(3,2),且与直线2x+y-1=0垂直的直线的方程;
(3)求点A(3,2)到直线3x+4y-7=0的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设向量$\overrightarrow{a},\overrightarrow{b}$,满足|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{10}$,|$\overrightarrow{a}-\overrightarrow{b}$|=2$\sqrt{2}$,则$\overrightarrow{a}•\overrightarrow{b}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义某种运算S=a?b,运算原理如图所示,则式子$[{({2tan\frac{5π}{4}})?lne}]-[{lg100?{{({\frac{1}{3}})}^{-1}}}]$的值是(  )
A.-8B.-4C.-3D.0

查看答案和解析>>

同步练习册答案