精英家教网 > 高中数学 > 题目详情
16.在△ABC中,角A、B、C的对边a,b,c满足b2+c2=a2+bc,且bc=8,则△ABC的面积等于(  )
A.$2\sqrt{3}$B.4C.$4\sqrt{3}$D.8

分析 由已知利用余弦定理可求A,进而利用三角形面积公式即可计算得解.

解答 解:∵b2+c2=a2+bc,可得:b2+c2-a2=bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×8×\frac{\sqrt{3}}{2}$=2$\sqrt{3}$.
故选:A.

点评 本题主要考查了余弦定理,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知{an}为等比数列且满足a6-a2=30,a3-a1=3,则数列{an}的前5项和S5=(  )
A.15B.31C.40D.121

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.长为$4\sqrt{2}$的线段AB在双曲线x2-y2=1的一条渐近线上移动,C为抛物线y=-x2-2上的点,则△ABC面积的最小值是(  )
A.$\frac{7}{2}$B.$\frac{7}{5}$C.$\frac{{7\sqrt{2}}}{4}$D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若实数x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{lg(y-1)≤0}\\{2x-y≤2}\end{array}\right.$,若a<$\frac{y}{x+1}$恒成立,则a的取值范围为(-∞,$\frac{2}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且an=2-2Sn(n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=log3(1-Sn)(n∈N*),若$\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}=\frac{25}{51}$,求自然数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知变量x,y(x,y∈R)满足约束条件$\left\{{\begin{array}{l}{x-y≤0}\\{x+y≥5}\\{y-3≤0}\end{array}}\right.$,若不等式(x+y)2≥c(x2+y2)(c∈R)恒成立,则实数c的最大值为$\frac{25}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设命题p:方程x2+m2y2=1表示焦点在y轴上的椭圆,命题q:?x∈R,x2+2mx+2m≥0,若p且q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=ln(x-e)的定义域为(e,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|-1≤x≤2},B={x|-1<x<4,x∈Z},则A∩B=(  )
A.{0,1,2}B.[0,2]C.{0,2}D.(0,2)

查看答案和解析>>

同步练习册答案