精英家教网 > 高中数学 > 题目详情
7.长为$4\sqrt{2}$的线段AB在双曲线x2-y2=1的一条渐近线上移动,C为抛物线y=-x2-2上的点,则△ABC面积的最小值是(  )
A.$\frac{7}{2}$B.$\frac{7}{5}$C.$\frac{{7\sqrt{2}}}{4}$D.7

分析 求出双曲线的渐近线方程,设C(m,-m2-2),运用点到直线的距离公式,以及二次函数的最值的求法,再由三角形的面积公式,即可得到三角形的面积的最小值.

解答 解:双曲线x2-y2=1的一条渐近线方程为y=x,
C为抛物线y=-x2-2上的点,
设C(m,-m2-2),
C到直线y=x的距离为d=$\frac{|{m}^{2}+m+2|}{\sqrt{2}}$=$\frac{(m+\frac{1}{2})^{2}+\frac{7}{4}}{\sqrt{2}}$≥$\frac{7}{4\sqrt{2}}$,
当m=-$\frac{1}{2}$时,d的最小值为$\frac{7}{4\sqrt{2}}$,
可得△ABC的面积的最小值为S=$\frac{1}{2}$×4$\sqrt{2}$×$\frac{7}{4\sqrt{2}}$=$\frac{7}{2}$.
故选:A.

点评 本题考查双曲线的方程和性质,以及抛物线的方程的应用,点到直线的距离公式的运用,考查二次函数的最值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.阅读如图所示的程序框图,运行相应的程序,若输入的值是-2,则输出的值是(  )
A.2B.4C.-2D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a,b,c分别是△ABC的三个内角A,B,C的对边,其中正确的命题有(填序号)③④
①已知∠A=60°,b=4,c=2,则△ABC有两解;
②若∠A=90°,b=3,c=4,△ABC内有一点P使得$\overrightarrow{PA}$,$\overrightarrow{PB}$,$\overrightarrow{PC}$两两夹角为120°,则${\overrightarrow{PA}}^{2}$+${\overrightarrow{PB}}^{2}$+${\overrightarrow{PC}}^{2}$=30;
③若∠A=90°,b=1,c=$\sqrt{3}$,△ABC内有一点P使得$\overrightarrow{PA}$与$\overrightarrow{PB}$夹角为90°,$\overrightarrow{PA}$与$\overrightarrow{PC}$夹角为120°,则tan∠PAC=$\frac{\sqrt{3}}{4}$;
④已知∠A=60°,b=4,设a=t,若△ABC是钝角三角形,则t的取值范围是(2$\sqrt{3}$,4)∪(4$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设[x]表示不大于x(x∈R)的最大整数,集合A={x|[x]=1},B={1,2},则A∪B=(  )
A.{1}B.{1,2}C.[1,2)D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为推行“新课改”教学法,某数学老师分别用传统教学和“新课改”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中个随机抽取20名学生的成绩进行统计,结果如表:记成绩不低于105分者为“成绩优良”.
 分数[0,90)[90,105)[105,1200)[120,135)[135,150)
 甲班频数 5 6 4 1
 乙班频数 1 3  6
(1)由以上统计数据填写下面的2×2列联表,并判断能否有97.5%的把握认为“成绩优良”与教学方式有关?
(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列和数学期望.
  甲班乙班  总计
 成绩优良   
 成绩不优良   
 总计   
附:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$,(n=a+b+c+d)
临界值表:
 P(K2≥k0 0.100.050 0.025  0.010
 k0 2.706 3.841 5.0246.635 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,ABC-A'B'C'为直三棱柱,M为CC的中点,N为AB的中点,AA'=BC=3,AB=2,AC=$\sqrt{13}$.
(1)求证:CN∥平面AB'M;
(2)求三棱锥B'-AMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设复数z满足$\frac{i}{z}$=1-i,则复数z在复平面内的对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,角A、B、C的对边a,b,c满足b2+c2=a2+bc,且bc=8,则△ABC的面积等于(  )
A.$2\sqrt{3}$B.4C.$4\sqrt{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知 锐角△ABC中内角A、B、C所对边的边长分别为a、b、c,满足a2+b2=6abcosC,且sin2C=2$\sqrt{3}$sinAsinB.
(1)求角C的值;
(2)设函数f(x)=sin(ωx+$\frac{π}{6}$)+cosωx(ω>0),且f(x)图象上相邻两最高点间的距离为π,求f(A)的取值范围.

查看答案和解析>>

同步练习册答案