精英家教网 > 高中数学 > 题目详情
4.若实数x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{lg(y-1)≤0}\\{2x-y≤2}\end{array}\right.$,若a<$\frac{y}{x+1}$恒成立,则a的取值范围为(-∞,$\frac{2}{5}$].

分析 画出约束条件的可行域,利用目标函数的几何意义求出表达式的最小值,推出a的范围即可.

解答 解:实数x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{lg(y-1)≤0}\\{2x-y≤2}\end{array}\right.$,即:$\left\{\begin{array}{l}{x≥0}\\{0<y-1≤1}\\{2x-y≤2}\end{array}\right.$的可行域如图:
$\frac{y}{x+1}$的几何意义是可行域内的点与D(-1,0)连线的斜率,由可行域可知DA的连线的斜率最小,由$\left\{\begin{array}{l}{y=1}\\{2x-y=2}\end{array}\right.$,解得A($\frac{3}{2}$,1),
kDA=$\frac{1}{\frac{3}{2}+1}$=$\frac{2}{5}$.
则a的取值范围为:(-∞,$\frac{2}{5}$].

点评 本题考查线性规划的简单应用,考查数形结合思想的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知点P是抛物线y2=2x上的动点,F为抛物线的焦点,A($\frac{7}{2}$,4),则|PA|+|PF|的最小值是(  )
A.$\frac{7}{2}$B.5C.$\frac{9}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设[x]表示不大于x(x∈R)的最大整数,集合A={x|[x]=1},B={1,2},则A∪B=(  )
A.{1}B.{1,2}C.[1,2)D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,ABC-A'B'C'为直三棱柱,M为CC的中点,N为AB的中点,AA'=BC=3,AB=2,AC=$\sqrt{13}$.
(1)求证:CN∥平面AB'M;
(2)求三棱锥B'-AMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设复数z满足$\frac{i}{z}$=1-i,则复数z在复平面内的对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若tanα•tanβ=3,且$sinα•sinβ=\frac{3}{5}$,则cos(α-β)的值为(  )
A.$-\frac{2}{5}$B.$\frac{2}{5}$C.$\frac{4}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,角A、B、C的对边a,b,c满足b2+c2=a2+bc,且bc=8,则△ABC的面积等于(  )
A.$2\sqrt{3}$B.4C.$4\sqrt{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在棱长为a的正方体ABCD-A1B1C1D1中,点M是AB的中点,则点A到平面A1DM的距离为(  )
A.$\frac{\sqrt{6}}{6}$aB.$\frac{\sqrt{6}}{3}$aC.$\frac{\sqrt{2}}{2}$aD.$\frac{1}{2}$a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}是公差为2的等差数列,且a1,a2,a5成等比数列,则S8=(  )
A.36B.49C.64D.81

查看答案和解析>>

同步练习册答案