分析 画出约束条件的可行域,利用目标函数的几何意义求出表达式的最小值,推出a的范围即可.
解答
解:实数x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{lg(y-1)≤0}\\{2x-y≤2}\end{array}\right.$,即:$\left\{\begin{array}{l}{x≥0}\\{0<y-1≤1}\\{2x-y≤2}\end{array}\right.$的可行域如图:
$\frac{y}{x+1}$的几何意义是可行域内的点与D(-1,0)连线的斜率,由可行域可知DA的连线的斜率最小,由$\left\{\begin{array}{l}{y=1}\\{2x-y=2}\end{array}\right.$,解得A($\frac{3}{2}$,1),
kDA=$\frac{1}{\frac{3}{2}+1}$=$\frac{2}{5}$.
则a的取值范围为:(-∞,$\frac{2}{5}$].
点评 本题考查线性规划的简单应用,考查数形结合思想的应用,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{2}$ | B. | 5 | C. | $\frac{9}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {1,2} | C. | [1,2) | D. | [1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{2}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{4}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{3}$ | B. | 4 | C. | $4\sqrt{3}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{6}}{6}$a | B. | $\frac{\sqrt{6}}{3}$a | C. | $\frac{\sqrt{2}}{2}$a | D. | $\frac{1}{2}$a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com